
Fastvideo Image & Video
Processing SDK

TECHNICAL MANUAL

v.0.17.3

© Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Fastvideo LLC

Academic B.M. Pontekorvo str. 6-103, Dubna, Moscow Region 141986, Russia

Phone: +7 (495) 542-04-49

Web: https://www.fastcompression.com

https://www.fastcinemadng.com

Email: info@fastcompression.com

Page 2 from 251 © Fastvideo, 2011-2022

https://www.fastcompression.com
https://www.fastcinemadng.com


Fastvideo Image & Video Processing SDK Technical manual

Table of contents

1 Introduction 13

1.1 About this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 About FASTVIDEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Contact FASTVIDEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Useful Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 FASTVIDEO Image & Video Processing SDK 15

2.1 Input Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 RAW Data Unpacking and Transforms . . . . . . . . . . . . . . . . . . . . 15

2.3 Dark Frame Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Flat Field Correction (Shading Correction) . . . . . . . . . . . . . . . . . . 15

2.5 RGB coefficients for RAW data . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Raw Curve as 1D LUT transform . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Temporal Raw Denoiser (under development) . . . . . . . . . . . . . . . . 16

2.8 Spatial Raw Denoiser together with Splitter and Merger . . . . . . . . . . 16

2.9 Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 HDR Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Demosaic (Debayer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.12 Color Surface Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.13 Spatial Denoiser for luma and chroma . . . . . . . . . . . . . . . . . . . . . 17

2.14 Color Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.15 1D LUTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.16 3D LUTs for RGB and HSV . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.17 Crop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.18 Rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.19 Resize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.20 Remap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.21 Sharp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.22 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.23 Parade (Waveform monitor) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.24 OpenGL Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.25 CUDA Streams support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Page 3 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

2.26 JPEG Compression and Decompression . . . . . . . . . . . . . . . . . . . . 19

2.27 JPEG2000 Encoder and Decoder . . . . . . . . . . . . . . . . . . . . . . . 20

2.28 RAW Bayer Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.28.1 Pipeline description for image acquisition stage . . . . . . . . . . . 22

2.28.2 Image processing and visualizing for compressed RAW . . . . . . . 22

3 Operation 24

3.1 Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Hardware Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Minimum system configuration . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Recommended standard system configuration . . . . . . . . . . . . 25

3.3.3 Recommended professional system configuration . . . . . . . . . . . 25

3.4 Supported Image and Video Formats . . . . . . . . . . . . . . . . . . . . . 25

3.5 IP protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 GPU Test for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Programming components 28

4.1 Library of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Import and Export Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Pipeline Surface Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Pipeline Split and Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Component recreation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Threads, Streams and Performance . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Multi GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Debayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Spatial Denoiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.12 JPEG Load and Store functions . . . . . . . . . . . . . . . . . . . . . . . . 45

4.13 JPEG Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.14 JPEG CPU Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.15 JPEG2000 Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Page 4 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

4.16 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.17 MJPEG Reader/Writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.18 Affine Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.19 Crop component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.20 Image Filter component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.20.1 Base Color Correction . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.20.2 Bayer Black Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.20.3 Binning Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.20.4 Flat-field correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.20.5 Color Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.20.6 Gaussian sharpen filter . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.20.7 LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.20.8 LUT RGB 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.20.9 LUT HSV 2D/3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.20.10 Median filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.20.11 SAM (subtract and multiply) . . . . . . . . . . . . . . . . . . . . . 60

4.20.12 Tone Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.20.13 White Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.21 HDR Builder component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.22 Resizer component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.23 Bayer Splitter and Bayer Merger components . . . . . . . . . . . . . . . . . 62

4.24 SDI import and export components . . . . . . . . . . . . . . . . . . . . . . 63

4.25 RAW import component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.26 Surface converter component . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.27 Histogram component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.28 NPP component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.29 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.30 Trace functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.31 Sample Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.32 How to create your own applications with that SDK . . . . . . . . . . . . . 87

4.33 Demo Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Fastvideo SDK API 89

5.1 Statuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Master SDK and secondary library initialization . . . . . . . . . . . . . . . 90

5.2.1 fastInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Page 5 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.2.2 fastGetSdkParametersHandle . . . . . . . . . . . . . . . . . . . . . 91

5.2.3 fastLibraryInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Trace and Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 fastGetDeviceSurfaceBufferInfo . . . . . . . . . . . . . . . . . . . . 91

5.3.2 fastEnableInterfaceSynchronization . . . . . . . . . . . . . . . . . . 92

5.3.3 fastTraceCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.4 fastTraceClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.5 fastTraceEnableFlush . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Memory management functions . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 fastMalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 fastFree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.3 fastGetDevices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Pipeline import functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.1 fastImportFromHostCreate . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.2 fastImportFromHostGetAllocatedGpuMemorySize . . . . . . . . . . 96

5.5.3 fastImportFromHostCopy . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.4 fastImportFromHostDestroy . . . . . . . . . . . . . . . . . . . . . . 97

5.5.5 fastImportFromDeviceCreate . . . . . . . . . . . . . . . . . . . . . 97

5.5.6 fastImportFromDeviceGetAllocatedGpuMemorySize . . . . . . . . . 98

5.5.7 fastImportFromDeviceCopy . . . . . . . . . . . . . . . . . . . . . . 99

5.5.8 fastImportFromDeviceDestroy . . . . . . . . . . . . . . . . . . . . . 99

5.6 Pipeline export functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.1 fastExportToHostCreate . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.2 fastExportToHostGetAllocatedGpuMemorySize . . . . . . . . . . . 100

5.6.3 fastExportToHostChangeSrcBuffer . . . . . . . . . . . . . . . . . . 101

5.6.4 fastExportToHostCopy . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6.5 fastExportToHostDestroy . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.6 fastExportToDeviceCreate . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.7 fastExportToDeviceCopy . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6.8 fastExportToDeviceGetAllocatedGpuMemorySize . . . . . . . . . . 104

5.6.9 fastExportToDeviceChangeSrcBuffer . . . . . . . . . . . . . . . . . 104

5.6.10 fastExportToDeviceDestroy . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Debayer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7.1 fastDebayerCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7.2 fastDebayerGetAllocatedGpuMemorySize . . . . . . . . . . . . . . . 106

Page 6 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.7.3 fastDebayerChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . . . 107

5.7.4 fastDebayerTransform . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7.5 fastDebayerDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 Denoise functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8.1 fastDenoiseCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8.2 fastDenoiseGetAllocatedGpuMemorySize . . . . . . . . . . . . . . . 110

5.8.3 fastDenoiseChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . . . 110

5.8.4 fastDenoiseTransform . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8.5 fastDenoiseTransformBayerPlanes . . . . . . . . . . . . . . . . . . . 112

5.8.6 fastDenoiseDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 JPEG Encoder functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9.1 fastJpegEncoderCreate . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9.2 fastJpegEncoderGetAllocatedGpuMemorySize . . . . . . . . . . . . 115

5.9.3 fastJpegEncoderChangeSrcBuffer . . . . . . . . . . . . . . . . . . . 115

5.9.4 fastJpegEncode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.9.5 fastJpegEncodeAsync . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9.6 fastJpegEncodeWithQuantTable . . . . . . . . . . . . . . . . . . . . 118

5.9.7 fastJpegEncodeAsyncWithQuantTable . . . . . . . . . . . . . . . . 119

5.9.8 fastJpegEncoderDestroy . . . . . . . . . . . . . . . . . . . . . . . . 120

5.10 JPEG Decoder functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.10.1 fastJpegDecoderCreate . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.10.2 fastJpegDecoderGetAllocatedGpuMemorySize . . . . . . . . . . . . 121

5.10.3 fastJpegDecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.10.4 fastJpegDecoderDestroy . . . . . . . . . . . . . . . . . . . . . . . . 123

5.11 JPEG CPU Decoder functions . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.11.1 fastJpegCpuDecoderCreate . . . . . . . . . . . . . . . . . . . . . . . 123

5.11.2 fastJpegCpuDecoderGetAllocatedGpuMemorySize . . . . . . . . . . 124

5.11.3 fastJpegCpuDecode . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.11.4 fastJpegDecoderDestroy . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12 JPEG I/O functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12.1 fastJfifLoadFromFile . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12.2 fastJfifHeaderLoadFromFile . . . . . . . . . . . . . . . . . . . . . . 127

5.12.3 fastJfifBytestreamLoadFromFile . . . . . . . . . . . . . . . . . . . . 128

5.12.4 fastJfifLoadFromMemory . . . . . . . . . . . . . . . . . . . . . . . . 129

5.12.5 fastJfifLoadHeaderFromMemory . . . . . . . . . . . . . . . . . . . . 130

Page 7 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.12.6 fastJfifLoadBytestreamFromMemory . . . . . . . . . . . . . . . . . 130

5.12.7 fastJfifStoreToFile . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.12.8 fastJfifStoreToMemory . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.13 JPEG2000 Encoder functions . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.13.1 fastEncoderJ2kLibraryInit . . . . . . . . . . . . . . . . . . . . . . . 133

5.13.2 fastEncoderJ2kCreate . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.13.3 fastEncoderJ2kGetAllocatedGpuMemorySize . . . . . . . . . . . . . 139

5.13.4 fastEncoderJ2kTransform . . . . . . . . . . . . . . . . . . . . . . . 139

5.13.5 fastEncoderJ2kFreeSlotsInBatch . . . . . . . . . . . . . . . . . . . . 143

5.13.6 fastEncoderJ2kUnprocessedImagesCount . . . . . . . . . . . . . . . 143

5.13.7 fastEncoderJ2kAddImageToBatch . . . . . . . . . . . . . . . . . . . 144

5.13.8 fastEncoderJ2kTransformBatch . . . . . . . . . . . . . . . . . . . . 145

5.13.9 fastEncoderJ2kGetNextEncodedImage . . . . . . . . . . . . . . . . 146

5.13.10 fastEncoderJ2kDestroy . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.14 JPEG2000 Decoder functions . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.14.1 fastDecoderJ2kLibraryInit . . . . . . . . . . . . . . . . . . . . . . . 147

5.14.2 fastDecoderJ2kPredecode . . . . . . . . . . . . . . . . . . . . . . . 147

5.14.3 fastDecoderJ2kCreate . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.14.4 fastDecoderJ2kGetAllocatedGpuMemorySize . . . . . . . . . . . . . 152

5.14.5 fastDecoderJ2kTransform . . . . . . . . . . . . . . . . . . . . . . . 152

5.14.6 fastDecoderJ2kFreeSlotsInBatch . . . . . . . . . . . . . . . . . . . . 155

5.14.7 fastDecoderJ2kUnprocessedImagesCount . . . . . . . . . . . . . . . 156

5.14.8 fastDecoderJ2kAddImageToBatch . . . . . . . . . . . . . . . . . . . 156

5.14.9 fastDecoderJ2kTransformBatch . . . . . . . . . . . . . . . . . . . . 157

5.14.10 fastDecoderJ2kGetNextDecodedImage . . . . . . . . . . . . . . . . 158

5.14.11 fastDecoderJ2kDestroy . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.15 Affine functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.15.1 fastAffineCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.15.2 fastAffineGetAllocatedGpuMemorySize . . . . . . . . . . . . . . . . 160

5.15.3 fastAffineChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . . . . 161

5.15.4 fastAffineTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.15.5 fastAffineDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.16 Crop functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.16.1 fastCropCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.16.2 fastCropGetAllocatedGpuMemorySize . . . . . . . . . . . . . . . . 164

Page 8 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.16.3 fastCropChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . . . . . 164

5.16.4 fastCropTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.16.5 fastCropDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.17 Image Filter functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.17.1 fastImageFilterCreate . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.17.2 fastImageFiltersGetAllocatedGpuMemorySize . . . . . . . . . . . . 175

5.17.3 fastImageFiltersChangeSrcBuffer . . . . . . . . . . . . . . . . . . . 175

5.17.4 fastImageFiltersTransform . . . . . . . . . . . . . . . . . . . . . . . 176

5.17.5 FastImageFiltersDestroy . . . . . . . . . . . . . . . . . . . . . . . . 177

5.18 Resize functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.18.1 fastResizerCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.18.2 fastResizerGetAllocatedGpuMemorySize . . . . . . . . . . . . . . . 179

5.18.3 fastResizerChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . . . 180

5.18.4 fastResizerTransform . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.18.5 fastResizerTransformStretch . . . . . . . . . . . . . . . . . . . . . . 181

5.18.6 fastResizerDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.19 HDR Builder functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.19.1 fastHdrBuilderCreate . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.19.2 fastHdrBuilderGetAllocatedGpuMemorySize . . . . . . . . . . . . . 184

5.19.3 fastHdrBuilderChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . 185

5.19.4 fastHdrBuilderFill . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.19.5 fastHdrBuilderFillAndTransform . . . . . . . . . . . . . . . . . . . 186

5.19.6 fastHdrBuilderDestroy . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.20 Bayer Splitter functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.20.1 fastBayerSplitterCreate . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.20.2 fastBayerSplitterGetAllocatedGpuMemorySize . . . . . . . . . . . . 188

5.20.3 fastBayerSplitterChangeSrcBuffer . . . . . . . . . . . . . . . . . . . 189

5.20.4 fastBayerSplitterSplit . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.20.5 fastBayerSplitterDestroy . . . . . . . . . . . . . . . . . . . . . . . . 190

5.21 Bayer Merger functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.21.1 fastBayerMergerCreate . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.21.2 fastBayerMergerGetAllocatedGpuMemorySize . . . . . . . . . . . . 192

5.21.3 fastBayerMergerChangeSrcBuffer . . . . . . . . . . . . . . . . . . . 192

5.21.4 fastBayerMergerMerge . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.21.5 fastBayerMergerDestroy . . . . . . . . . . . . . . . . . . . . . . . . 193

Page 9 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.22 Timer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.22.1 fastGpuTimerCreate . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.22.2 fastGpuTimerStart . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.22.3 fastGpuTimerStop . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.22.4 fastGpuTimerGetTime . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.22.5 fastGpuTimerDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.23 Mux functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.23.1 fastMuxCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.23.2 fastMuxSelect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.23.3 fastMuxDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.24 SDI import and export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.24.1 fastSDIImportFromHostCreate/fastSDIImportFromDeviceCreate . 198

5.24.2 fastSDIExportToHostCreate/fastSDIExportToDeviceCreate . . . . 199

5.24.3 fastSDIImportFromHostGetAllocatedGpuMemorySize . . . . . . . . 201

5.24.4 fastSDIImportFromDeviceGetAllocatedGpuMemorySize . . . . . . 202

5.24.5 fastSDIExportToHostGetAllocatedGpuMemorySize . . . . . . . . . 202

5.24.6 fastSDIExportToDeviceGetAllocatedGpuMemorySize . . . . . . . . 203

5.24.7 fastSDIImportFromHostCopy/fastSDIImportFromDeviceCopy . . . 203

5.24.8 fastSDIImportFromHostCopyPacked/fastSDIImportFromDeviceCopyPacked204

5.24.9 fastSDIExportToHostCopy/fastSDIExportToDeviceCopy . . . . . . 205

5.24.10 fastSDIImportToHostCopy3/fastSDIImportToDeviceCopy3 . . . . . 206

5.24.11 fastSDIExportToHostCopy3/fastSDIExportToDeviceCopy3 . . . . . 208

5.24.12 fastSDIImportFromHostDestroy/fastSDIImportFromDeviceDestroy 209

5.24.13 fastSDIExportToHostDestroy/fastSDIExportToDeviceDestroy . . . 209

5.25 RAW import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.25.1 fastRawImportFromHostCreate/fastRawImportFromDeviceCreate . 210

5.25.2 fastRAWImportFromHostGetAllocatedGpuMemorySize . . . . . . . 211

5.25.3 fastRAWImportFromDeviceGetAllocatedGpuMemorySize . . . . . . 212

5.25.4 fastRawImportFromHostDecode/fastRawImportFromDeviceDecode 212

5.25.5 fastRawImportFromHostDestroy/fastRawImportFromDeviceDestroy 213

5.26 Surface converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5.26.1 fastSurfaceConverterCreate . . . . . . . . . . . . . . . . . . . . . . 214

5.26.2 fastSurfaceConverterGetAllocatedGpuMemorySize . . . . . . . . . . 216

5.26.3 fastSurfaceConverterChangeSrcBuffer . . . . . . . . . . . . . . . . . 216

5.26.4 fastSurfaceConverterTransform . . . . . . . . . . . . . . . . . . . . 217

Page 10 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.26.5 fastSurfaceConverterDestroy . . . . . . . . . . . . . . . . . . . . . . 218

5.27 Histogram functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.27.1 fastHistogramCreate . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.27.2 fastHistogramGetAllocatedGpuMemorySize . . . . . . . . . . . . . 220

5.27.3 fastHistogramChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . . 221

5.27.4 fastHistogramCalculate . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.27.5 fastHistogramDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.28 NppFilter functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.28.1 fastNppFilterCreate . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.28.2 fastNppFilterGetAllocatedGpuMemorySize . . . . . . . . . . . . . . 226

5.28.3 fastNppFilterChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . . 227

5.28.4 fastNppFilterFiltersTransform . . . . . . . . . . . . . . . . . . . . . 227

5.28.5 fastNppFilterDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . 228

5.29 NppGeometry functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.29.1 fastNppGeometryCreate . . . . . . . . . . . . . . . . . . . . . . . . 229

5.29.2 fastNppGeometryGetAllocatedGpuMemorySize . . . . . . . . . . . 232

5.29.3 fastNppGeometryChangeSrcBuffer . . . . . . . . . . . . . . . . . . 232

5.29.4 fastNppGeometryTransform . . . . . . . . . . . . . . . . . . . . . . 233

5.29.5 fastNppGeometryDestroy . . . . . . . . . . . . . . . . . . . . . . . 233

5.30 NppResize functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

5.30.1 fastNppResizeCreate . . . . . . . . . . . . . . . . . . . . . . . . . . 235

5.30.2 fastNppResizeGetAllocatedGpuMemorySize . . . . . . . . . . . . . 236

5.30.3 fastNppResizeChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . 236

5.30.4 fastNppResizeTransform . . . . . . . . . . . . . . . . . . . . . . . . 237

5.30.5 fastNppResizeTransformStretch . . . . . . . . . . . . . . . . . . . . 238

5.30.6 fastNppResizeDestroy . . . . . . . . . . . . . . . . . . . . . . . . . 239

5.31 NppRotate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

5.31.1 fastNppRotateCreate . . . . . . . . . . . . . . . . . . . . . . . . . . 239

5.31.2 fastNppRotateGetAllocatedGpuMemorySize . . . . . . . . . . . . . 240

5.31.3 fastNppRotateChangeSrcBuffer . . . . . . . . . . . . . . . . . . . . 241

5.31.4 fastNppRotateGetRotateQuad . . . . . . . . . . . . . . . . . . . . . 241

5.31.5 fastNppRotateTransform . . . . . . . . . . . . . . . . . . . . . . . . 242

5.31.6 fastNppRotateDestroy . . . . . . . . . . . . . . . . . . . . . . . . . 243

6 Source Code for Sample Applications 245

6.1 Other Sample Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Page 11 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

6.2 Examples of command line

for DebayerSample application . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.3 Examples of command line

for JpegSample application . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

6.4 Example of command line

for DebayerJpegSample application . . . . . . . . . . . . . . . . . . . . . . 246

6.5 Examples of command line

for SDIConverterSample application . . . . . . . . . . . . . . . . . . . . . . 247

6.6 Example of command line

for PhotoHostingSample application . . . . . . . . . . . . . . . . . . . . . . 247

6.7 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

6.8 Disclaimer of Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

6.9 List of Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7 Application Notes 250

Page 12 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

1 Introduction

1.1 About this manual

We sincerely hope that this manual can answer your questions, but should you have

any further questions or if you wish to claim, please contact your local dealer or refer to

the FASTVIDEO support on our website.

The purpose of this document is to provide a description of the FASTVIDEO

Image & Video Processing SDK and to describe the correct way to install related

software and drivers and run it successfully. Please read this manual thoroughly before

getting started the software for the first time. Please follow all instructions and observe

the warnings.

This document is subject to change without notice.

1.2 About FASTVIDEO

FASTVIDEO is one of worldwide leaders in the field of high performance GPU image

and video processing solutions. Based in Russia, FASTVIDEO offers their GPU software

solutions worldwide. In close collaboration with customers FASTVIDEO has developed

a broad spectrum of technologies and cutting-edge, highly competitive products.

FASTVIDEO software solutions find use in machine vision cameras, scanners, high

speed imaging applications, robotix, broadcasting and streaming, heavy-loaded internet

services, 3D and VR, other applications for image and video processing. The broad

spectrum of solutions also includes medical applications and digital cinema.

1.3 Contact FASTVIDEO

FASTVIDEO is a worldwide operating company.

Headquarters: Academic B.M. Pontekorvo str. 6-103, Dubna, Moscow Region

141986, Russia

Phone: +7 (495) 542-04-49

Web: https://www.fastcompression.com,

https://www.fastcinemadng.com

Email: info@fastcompression.com

Page 13 from 251 © Fastvideo, 2011-2022

https://www.fastcompression.com
https://www.fastcinemadng.com


Fastvideo Image & Video Processing SDK Technical manual

1.4 Conformity

FASTVIDEO Image & Video Processing SDK has been tested at the following:

� Windows-7/8/10 (64-bit)

� Linux Ubuntu, OpenSUSE 12, SLC-7.5, CentOS, etc.

� NVIDIA GPUs with Compute Capability ≥ 3.0

� CUDA-10 for server, desktop, laptop and mobile GPUs

� NVIDIA drivers 457.30 or later

� All sample applications are prepared for MSVS 2019 and gcc

1.5 Useful Links

� FASTVIDEO Homepage

https://www.fastcompression.com

� NVIDIA CUDA and GPU drivers download:

http://www.nvidia.com/Download/index.aspx

� JPEG Standard:

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

� Full Image Processing Pipeline on the GPU:

http://on-demand.gputechconf.com/gtc/2014/presentations/S4151-full-gpu-image-

processing-pipeline-camera-apps.pdf

� gpu-camera-sample application with source codes:

https://github.com/fastvideo/gpu-camera-sample

Page 14 from 251 © Fastvideo, 2011-2022

https://www.fastcompression.com
http://www.nvidia.com/Download/index.aspx
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4151-full-gpu-image-processing-pipeline-camera-apps.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4151-full-gpu-image-processing-pipeline-camera-apps.pdf
https://github.com/fastvideo/gpu-camera-sample


Fastvideo Image & Video Processing SDK Technical manual

2 FASTVIDEO Image & Video Processing

SDK

2.1 Input Data Formats

Output formats for cameras could differ significantly. That’s why we have created

input module which handles various image formats acquired from cameras.

2.2 RAW Data Unpacking and Transforms

RAW data from cameras could have 8/10/12/14/16 bits per pixel. Quite often input

data are packed and we need to do unpacking. For example, 12-bit data are usually trans-

ferred as 2 pixels in 3 Bytes. Unpacking module can extract RAW data from bytestream

and convert it to standard 8-bit or 16-bit format.

2.3 Dark Frame Subtraction

For many image sensors this is important operation mode. One can either subtract

one value from each pixel of the image or subtract the whole image (dark frame). For

CMOS image sensors that mode could be called FPN (Fixed Pattern Noise) subtraction.

2.4 Flat Field Correction (Shading Correction)

It’s well known that image intensity is decreasing near the edges of image sensor.

It happens due to differences in amount of light falling on each pixel. To take that into

account one have to multiply pixel values to correction coefficients.

2.5 RGB coefficients for RAW data

Four coefficients cR, cG1, cG2 and cB are necessary to balance different RAW color

channels before demosaicing. Usually bayer RAW image looks greenish, which is not

good for further demosaicing. That simple image color balancing is widely used for color

cameras.

Page 15 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

2.6 Raw Curve as 1D LUT transform

Standard or custom 1D look-up tables (LUT) could be applied to each channel of

RAW data before debayering. Master curve has the same form all three channels. There

are also individual curves for each channel of Bayer pattern.

2.7 Temporal Raw Denoiser (under development)

There is an opportunity to suppress temporal noise for image series (not applicable to

single image). That algorithm is based on correlation of adjacent frames to check motion

detection and to remove temporal noise.

2.8 Spatial Raw Denoiser together with Splitter and

Merger

It is possible to suppress spatial noise for each channel of Raw Bayer image before

applying demosaicing. One can split Raw Bayer image into 4 planes according to Bayer

pattern and then remove spatial noise for each plane separately. Finally we need to merge

these planes to get an image with Bayer pattern. Parameters: Bayer pattern, wavelet

name, threshold function, number of DWT resolution levels, array of denoising thresholds

for each wavelet band.

2.9 Median Filter

Median filter can suppress impulse noise on images. GPU-based implementation of

Median filter with window 3× 3 is working very fast and efficient.

2.10 HDR Builder

HDR is.

2.11 Demosaic (Debayer)

Demosaicing is a transformation of a 8/16-bit Raw Bayer image into the conventional

24/48-bit RGB format. Demosaicing is required because digital cameras normally don’t

produce ready-to-go RGB images, instead they store visual information as a set of separate

Page 16 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

R, B, and G values derived from the image sensor of the camera and the actual color of

a pixel in that array is determined by interpolating nearby pixel colors. Demosaicing

software does the following:

� Algorithms: Binning, HQLI, L7, DFPD, MG

� Converts 8/16-bit Raw Bayer images to 24/48-bit BMP/PPM

� Can do that really fast on NVIDIA GPU, much faster than on any CPU

� All Bayer mosaic patterns for input data are supported (RGGB, BGGR, GBRG,

GRBG)

� High quality image demosaicing

� Significant moire suppression

� Immediate and precise time and performance measurements

2.12 Color Surface Converter

Color Surface Converter is intended to transform RGB data to separate planes of R,

G and B. It also performs bit depth transform for the whole image.

2.13 Spatial Denoiser for luma and chroma

There is an opportunity to suppress luma and chroma spatial noise for each color

image. One have to set algorithm type, threshold function, number of DWT resolution

levels, and array of denoising thresholds for luma and chroma channels for each wavelet

band.

2.14 Color Correction

That functionality is a must for color correction procedure. To get good color re-

production, we need to specify or calculate color correction matrix and apply it to the

image.

2.15 1D LUTs

Standard or custom 1D look-up tables (LUT) could be utilized in the software.

Gamma transform is also implemented via 1D LUT.

Page 17 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

2.16 3D LUTs for RGB and HSV

Standard or custom 3D look-up tables (LUT) in .cube format could be utilized for

color grading.

2.17 Crop

To cut an image with specified dimensions we utilize Crop function. We offer high

performance implementation of Crop algorithm on GPU.

2.18 Rotate

To rotate or flip/flop an image with specified dimensions we utilize Rotate function.

We offer high performance algorithm for real-time image rotation (90/180/270 degrees)

and flip/flop on GPU. We’ve also implemented rotation to an arbitrary angle.

2.19 Resize

Quite often one has to show pictures with resolutions which are different from monitor

or window resolution. Here comes a task of image resize. We offer high quality algorithm

for real-time image resize on GPU (both downsampling and upsampling).

2.20 Remap

We offer remapping algorithm to perform the following actions: rotation to an arbi-

trary angle, undistortion, affine and perspective transforms, various projections, arbitrary

image mapping on GPU.

2.21 Sharp

To enhance image quality we have implemented Sharp function. We offer very fast

and high quality algorithm for real-time image sharpening on GPU.

Page 18 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

2.22 Histogram

Various histograms could be calculated for 8/16-bit grayscale images and for 24-bit

color images to evaluate distribution of grayscale/color component values of particular

image. There is an option to get a histogram for each color channel of RAW or DNG data

as well.

2.23 Parade (Waveform monitor)

Parade is a set of histograms for vertical rows of each RGB component of color image.

This is useful representation of color image data to evaluate image quality, white balance

and color distribution.

2.24 OpenGL Output

After GPU image processing one has to show a picture on the screen. As soon as all

computations on GPU are done, then OpenGL is the fastest way to show the image on

monitor because all data are already in GPU memory.

2.25 CUDA Streams support

CUDA Streams technology offers an opportunity to perform computations on GPU

at the same time with data copy to or from GPU. This is the way to improve total

performance due to overlap between copy and computations.

2.26 JPEG Compression and Decompression

This is CUDA implementation of JPEG Baseline algorithm for compression and

decompression on NVIDIA GPUs according to JPEG Standard.

Key Features

� Implementation is 100% compliant with JPEG Baseline standard

� Baseline JPEG compression and decompression for grayscale (8-bit) and color (24-

bit) images with arbitrary width and height

� Extremely fast lossy image encoding and decoding with variable compression ratio

� Chroma subsampling modes: 4 : 4 : 4, 4 : 2 : 2, 4 : 2 : 0

Page 19 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� Minimum input image size: 1× 1 for all chroma subsampling modes

� Maximum input image size is 16, 000× 16, 000 or more (optional)

� JPEG image quality in the range from 1 to 100%

� Option to read/write any EXIF section

� Standard data input: 8/24-bit images from RAM/HDD/RAID/SSD/GPU

� Optional data input/output: 12/36-bit images from RAM/HDD/RAID/SSD/GPU

� Optional parameters: quantization tables

� Data output: final compressed/uncompressed image in

RAM/HDD/RAID/SSD/GPU

� Continuous data mode (input one image after another)

� Standard set of computations for parallel implementation of Baseline JPEG com-

pression and decompression

– JPEG Encoding: Input data parsing, Color Transform, Level shift, 2D DCT,

Quantization, Zig-zag, AC/DC, DPCM, RLE, Huffman, Byte stuffing, JFIF

formatting

– JPEG Decoding: JFIF parsing, Restart Marker search, Inverse Huffman, In-

verse RLE, Inverse DPCM, AC/DC, Inverse Zig-zag, Inverse Quantization,

IDCT, Inverse Level shift, Inverse Color Transform, Output formatting

� Optimized for the latest NVIDIA GPUs

� Compatible with Windows-7/8/10, Linux Ubuntu, OpenSUSE, CentOS, L4T

We have succeeded to make all stages of JPEG algorithm parallel including entropy en-

coding and decoding. There was a widespread opinion that Huffman algorithm could be

only serial and that’s why this is a bottleneck of JPEG performance. In our solution

Huffman coding is not a bottleneck anymore because it’s fully parallel and is performed

on GPU. We don’t off-load anything from GPU to CPU to make JPEG codec faster.

CUDA JPEG codec is extremely fast and is functioning completely on GPU.

2.27 JPEG2000 Encoder and Decoder

This is CUDA-based implementation of JPEG2000 algorithm for image encoding and

decoding according to JPEG2000 Standard.

Key Features

� Implementation is compliant with JPEG2000 standard

Page 20 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� JPEG2000 encoding and decoding for grayscale and color images with arbitrary

width and height

� Lossy (CDF 9/7) and lossless (CDF 5/3) image compression and decompression

� Bit depth: 8–16 bits per channel (optionally up to 24 bits per channel)

� Color spaces: RGB, YCbCr, XYZ

� Number of DWT resolution levels: 1–12

� Code-block size 16× 16, 32× 32 or 64× 64

� Subsampling 4 : 4 : 4, 4 : 2 : 2, 4 : 2 : 0

� Image quality in the range of 1–100 (float value)

� Rate control option to set image compression ratio

� Support of tiling both for encoder and decoder

� Window mode for JPEG2000 decoder

� Data input: images from HDD/RAID/SSD/CPU/GPU

� Data output: final compressed or uncompressed image in

HDD/RAID/SSD/CPU/GPU

� Modes of operation

– Single image mode (minimum latency)

– Batch mode (streaming processing with max throughput)

– Multiple tile mode for big images

– Other fast modes: massive parallelism with high performance and slightly less

compression (option)

� CUDA Streams support to offer maximum performance

� Standard set of computations for JPEG2000 encoding and decoding on CUDA

– CUDA JPEG2000 Encoder

* Input data parsing

* Color Transform (ICT/RCT)

* 2D DWT with CDF 9/7 or 5/3

* Quantization

* EBCOT Tier-1 (Context modeler and Bit-plane MQ-Coder)

* PCRD (Post Compression Rate Distortion)

* Tier-2 (Tag Tree Coding)

* Output formatting

– CUDA JPEG2000 Decoder

* Input parsing

Page 21 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

* Tag Tree Decoding

* Binary Decoder

* Inverse Quantization

* EIDWT

* Inverse Color Transform

* Output formatting

� Performance is much better than CPU-based JPEG2000 codecs JasPer, JJ2000,

OpenJPEG, Kakadu, etc.

� Performance is significantly higher than CUDA-based JPEG2000 encoders CUJ2K

and GPU JPEG2K

Please note that last stages of JPEG2000 encoding (Tier-2 and output formatting) and

decoding algorithms are carried out on CPU, that’s why powerful GPU and CPU are

necessary to get maximum performance for J2K encoding and decoding.

2.28 RAW Bayer Codec

Performance of image processing in camera applications could be much higher is we

apply image compression for raw data without using Debayer. That approach is usually

called Raw Bayer Compression. Right after image acquisition, we can create four planes

according to colors of Bayer pattern (RGGB). Then we can do JPEG/JPEG2000 data

compression for each plane with high quality. It could be done very fast and without

introducing significant image artifacts. In this way, we can temporary exclude debayer

from image processing pipeline and increase performance for realtime applications.

2.28.1 Pipeline description for image acquisition stage

� Image acquisition and unpacking of raw data

� Image preprocessing: dark frame (black offset) and FFC

� Decomposition and alignment of real bayer pattern to 4 separate color planes (Split)

� JPEG compression (quality > 90%), optionally JPEG2000 (CDF 5/3 or 9/7)

� Data storage to SSD/HDD/RAID

2.28.2 Image processing and visualizing for compressed RAW

� Bayer image decompression (JPEG decoding)

� Image composition with real bayer pattern from 4 color planes

Page 22 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� White balance

� Debayer

� Denoiser

� Color correction

� Crop/Rotate/Resize/Sharp

� LUT (gamma)

� OpenGL output

� Optional output MJPEG compression to AVI

Page 23 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

3 Operation

3.1 Software Requirements

FASTVIDEO Image & Video Processing SDK is compatible with the following

OS (64-bit):

� Windows 7 SP1

� Windows 8

� Windows 10

� Linux Ubuntu

� Linux OpenSUSE 12.3

� Linux SLC-7.5

� Linux CentOS

� Linux4Tegra

3.2 Hardware Requirements

FASTVIDEO Image & Video Processing SDK is compatible with NVIDIA

GPUs with Compute Capability 3.0 and more. The most ol supported architecture is

Kepler for GeForce family and Quadro/Tesla. We also support the following mobile

Jetson GPUs: Nano, TK1, TX1, TX2, iTX2, NX and AGX Xavier (Linux4Tegra).

To work on laptop, one have to download CUDA, which is designed for laptop GPUs.

While working, laptop should be connected to mains to offer maximum performance. If

you try to work from internal battery of laptop, the performance will degrade.

3.3 System Configuration

3.3.1 Minimum system configuration

For a basic operation of FASTVIDEO SDK the following minimum system configu-

ration is required. Please note that bandwidth and processing performance are tied to the

hardware configuration and the minimum hardware configuration could lead to reduced

bandwidth and limited performance.

� CPU: Intel Core-i3 or better

� RAM: 4 GB RAM or more

Page 24 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� HDD/SSD: 200 MB of free disc space

� Video: NVIDIA GPU with Compute Capability ≥ 3.0, GPU memory 2 GB or more

� Ports: Motherboard with PCIe ×16 Gen2 or Gen3 slot for GPU

One can also use FASTVIDEO Image & Video Processing SDK with a laptop

which has NVIDIA GeForce GT series GPU with Compute Capability ≥ 3.0.

3.3.2 Recommended standard system configuration

For good processing performance and bandwidth we recommend to use the following

system configuration.

� CPU: Intel Core-i7, 4770K or better

� RAM: 8 GB RAM or more

� HDD/SSD: 1000 MB of free disc space

� Video: NVIDIA GeForce 1080TI / 2080TI or Quadro 6000M / 6000, GPU memory

8-12 GB

� Ports: Motherboard with PCI-Express ×16 Gen3 slot for GPU

For maximum throughput in addition to top-level GPUs we recommend to use mother-

boards with PCI-Express ×16 Gen3 support and Intel IvyBridge CPUs to benefit from

PCIe-3.0 technology.

To work with PCIE/Thunderbolt cameras or PCI-Express frame grabbers (which

are custom for CameraLink, CoaxExpress and 10GigE high speed and high resolution

cameras) we recommend to use motherboards with > 40 PCIe lanes (chipset 2011 or

better).

3.3.3 Recommended professional system configuration

� 1U / 2 × 2609v4 / 32 GB DDR4 ECC REG / 960 GB SSD Intel S4600 2.5”

� NVIDIA Tesla T4, GPU memory 16 GB

3.4 Supported Image and Video Formats

Standard image formats: BMP, PGM, PPM, YUV, YCbCr, JPG, J2K, JP2

Optional image formats: DNG, CinemaDNG, OpenGL texture or PBO, RAW

Video format for MJPEG codec: AVI

Video format for MJPEG2000 codec: MXF

Page 25 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

3.5 IP protection

Demo version of SDK is protected with time limitation usage and with watermarks.

We could also supply hardware dongles which allow to work without the above mentioned

restrictions. Demo version has almost the same performance and one can utilize demo

SDK to build your own demo application or integrate SDK into your software and test it

in corresponding environment.

Apart from hardware dongles we also have other licensing options

3.6 Technical Overview

� C language API provides total control over image processing functions in SDK

� API in C/C++

� Thread-safety allows multi-threaded client applications

� Image data input/output provided by buffers offers maximum flexibility

� Both static and dynamic libraries are available

� Designed for CUDA-10 (64-bit)

� Compatible with the latest NVIDIA GPUs

� Available on multiple platforms including Win-7/8/10, Linux, L4T

3.7 GPU Test for Windows

To check available GPUs on PC, one could download freeware software TechPowerUp

GPU-Z from the following link: https://www.techpowerup.com/gpuz/

GPU-Z is a lightweight utility designed to provide you with all information about

your graphics card and GPU. You can also find out the info about PCI-Express connection

to PC.

3.8 Quick Start

Download SDK, create a directory and unzip the Software Development Kit (SDK)

into the directory.

Run sample applications without any parameters. This will display all parameters.

In sdkReadme.txt file you can find general info about the software.

In release log.txt file you can see all changes that we’ve done.

Page 26 from 251 © Fastvideo, 2011-2022

https://www.techpowerup.com/gpuz/


Fastvideo Image & Video Processing SDK Technical manual

3.9 Installation

1. Read the Standard License Agreement (SLA).

2. Download the latest drivers for your NVIDIA GPU from the following link:

http://www.nvidia.com/Download/index.aspx

3. Download the latest Senselock dongle drivers here:

http://senselock.ru/files/senselock windows 2.52.1.0.rar

4. Start the installer. Be sure that you have administrator privileges or start the

Installer with administrator rights (right click and select “Run as Administrator”).

5. Unzip FASTVIDEO Image & Video Processing SDK

Page 27 from 251 © Fastvideo, 2011-2022

http://www.nvidia.com/Download/index.aspx
http://senselock.ru/files/senselock_windows_2.52.1.0.rar


Fastvideo Image & Video Processing SDK Technical manual

4 Programming components

This is brief list of components from FASTVIDEO Image & Video Processing

SDK :

� ImportAdapter and ExportAdapter

� Raw data unpacking

� Serial Digital Interface (SDI) importer/exporter

� Image Preprocessing (dark frame subtraction, vignetting removal, etc.)

� Raw per-channel coefficients for RGGB

� Raw Tone Curve (master and per-channel)

� Raw Bayer Splitter and Merger

� Raw Bayer Codec

� Median filter

� Binning filter

� Flat-field correction

� Spatial Raw Denoiser

� Debayer (Binning, HQLI, L7, DFPD and MG algorithms)

� Spatial Denoiser for luma and chroma

� Color Surface Converter (RGB to R, G, B; bit depth converter)

� RGB to Gray

� Color Transforms (RGB, HSV, YCbCr)

� Color Correction with matrix profile

� 1D LUT and Gamma

� 3D LUT for HSV and RGB

� Affine Transforms (Rotate, Flip, Flop)

� Crop

� Resize

� HDR Builder

� Remap (rotation to arbitrary angle, perspective transforms, undistortion, etc.)

� Sharp

� Histogram

� Parade (Waveform monitor)

� OpenGL output

� JPEG Encoder/Decoder, MJPEG Reader/Writer

� JPEG2000 Encoder/Decoder, MXF Reader/Writer

Page 28 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� H.264/H.265 Encoder/Decoder

� CUDA Streams support

� Trace

� Time, performance and quality measurements

� Multiplexor

� Sample applications with source codes

All functions and types are declared in fastvideo sdk.h

4.1 Library of components

There are multiple libraries in that SDK. FASTVIDEO SDK is a primary library of

SDK. Other libraries of components are the secondary libraries. Each secondary library

contains optional, experimental or wrapper components. Wrapper component wraps some

external library to use it together with FASTVIDEO components.

Primary library has to be initialized first. After that any secondary library can be

initialized. Primary library contains global options that affects some functionality of all

components. Global options have to be passed to the secondary library to allow primary

library control and to manage secondary library.

Primary library of SDK is initialized by fastInit function call. It takes affinity

mask of GPU devices and attach CUDA context to defined GPU. If SDK will be used

with OpenGL, integration openGlMode flag in fastInit has to be true. In this case SDK

calls cudaGLSetGLDevice to initialize device instead of cudaSetDevice. In all other cases

openGlMode flag has to be false.

For the current version of SDK openGlMode flag is depricated and will be deleted soon.

In general fastInit call can be replaced by cudaSetDevice without any consequences.

Or alternatively fastInit should be called first and then call cudaSetDevice to assign

new GPU.

After primary library initialization, function fastGetSdkParametersHandle has to

be called to get handle of global options. Any secondary library has to be initialized by

this handle. Initialization function of any secondary library has format

fastlibrary nameLibraryInit, where library name is the name of the library. Initial-

ization function takes handles for global options as parameters.

In case if user application does not use secondary library, it is not necessary to call

fastGetSdkParametersHandle function.

Page 29 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

4.2 Pipeline

In computing, a pipeline is a set of data processing elements connected sequentially,

where an output of one element is the input for the next one. FASTVIDEO SDK uses

pipeline paradigm for data processing. Actually, SDK is a set of data processing compo-

nents. Each component in general has one input and one output. Input of one component

has to be connected to output of another component.

Every pipeline has the first component, several central components and the last

component. Each central component has input and output. The first component has only

output. The last component has only input.

Link between the components is aggregated by fastDeviceSurfaceBufferHandle t

structure or Link Buffer. In general, fastDeviceSurfaceBufferHandle t is a buffer

together with some additional service information. Its details are hidden from user. The

buffer is always allocated by the previous component and is used by the next component.

Fig. 1. Pipeline diagram

There are three stages of life cycle of every component: creation, processing, de-

stroying. Every component has three general methods for corresponding live cycle stages.

Method with suffix “Create” corresponds to creation stage. Method with suffix “De-

stroy” corresponds to destroying stage. Method with suffix “Transform” corresponds to

processing stage for most components, but for some components processing methods have

another names that more accurately define the essence of component’s operation (e.g.

Encode, Decode, Copy, etc.).

On creation stage all necessary components are instantiated and linked to each other.

Every central component has two parameters in Create method:

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer.

dstBuffer is a pointer to output buffer for the current component. srcBuffer is an

output buffer of the previous component. So the First component has only dstBuffer

Page 30 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

and Last component has only srcBuffer. Components of the pipeline are instantiated in

the order from the First to the Last. For component creation it’s necessary that source

buffer already has been instantiated. So when none of components exists, only the First

component can be created.

Main functionality of the First component is to prepare data from an external source

and to import it to the pipeline. Main functionality of the Last component is to export

data from the pipeline to external destination. In general, external source and destina-

tion could be both GPU and CPU buffers. Components that import from CPU (Host)

and GPU (Device) buffer data to pipeline are ImportFromHost and ImportFromDevice,

respectively. Components that export data from pipeline to Host and Device buffer are

ExportToHost and ExportToDevice, respectively. External source and destination buffers

can have quite complicated format (e.g. JPEG). So JpegDecoder is the First component

of the pipeline and JpegEncoder is the Last component of the pipeline.

As soon as the pipeline is created, it is ready to process the data. Any pipeline is

intended to process not just one, but many images. Array of images should be organized

by user application and they could be processed in a loop. Processing method of every

stage of the pipeline has to be called sequentially to process every image. Processing

method takes data from the input buffer, processes it and copies to the output buffer, so

processing method of the next component can be called.

During creation, every component of a pipeline takes maximum size of processing

image. Accordingly, all internal buffers are allocated according to max size of the image.

Setting up maximum image size is the task for user application. Any pipeline can process

images with sizes less than maximum at each dimension. Processing method returns

FAST INVALID SIZE if image size is greater than maximum value.

As soon as data processing is finished, the pipeline should be destroyed. Each com-

ponent is destroyed by calling Destroy method. It doesn’t matter in which order you are

going to destroy the components.

Some central components of the pipeline are containers for multiple subcomponents

or methods. For example, Image Filter component is a container for a set of image filters.

Container provides common interface for subcomponents with individual parameters.

4.3 Programming interface

Fastvideo SDK has C-like API. It consists of POD (Plain Old Data) structures and

functions. It has simple interface to support multiple platform and compilers.

Page 31 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Let us discuss important question how to initialize API structure. Structure con-

tains multiple fields. Default value in Fastvideo SDK API for field is zero. Zero value

means to disable optional feature or to use default component options. Fastvideo SDK

is a dynamically developing product. Sometimes new fields are added to an existing

structure. New field has to be initialized by zero automatically without additional code

changes. Therefore, we suggest using the following code for structure initialization in

C++ compiler:

struct C {
int x;

int y;

};

C c = {0}; // zero initialize POD

C c = C; // use the default constructor.

C* c = new C; // use the default constructor.

Use memset for C file or compilers :

C c;

memset(&c, 0, sizeof (C));

The next important question is how to assign a value to a certain field of a struc-

ture. We insist that value to the field has to be assigned explicitly. Do not use implicit

initialization like

C c = {2, 3};

Please use

c.x = 2;

c.y = 3;

Sometimes we change field semantics or field order in a structure. In the case of explicit

assignment by field name, this could result in error during compilation. Developer has to

take care to investigate and to apply necessary changes.

Page 32 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

4.4 Import and Export Adapters

There is no way to offer direct feed for central component of pipeline by user data. In

order to import user data to the pipeline, we need to run Import Adapter. To export data

from the pipeline to user application, we need Export Adapter. That’s why the shortest

pipeline contains at least three components: Import Adapter, Central Component (e.g.

Debayer), and Export Adapter.

ImportFromHost, ExportToHost adapters allow to communicate with any pipeline

through CPU (Host) buffer. It is a common case for most of applications. Host buffer

should be allocated by fastMalloc. If the buffer is allocated by original malloc, then it

also can be used, but in that case the performance of copy will degrade.

Function fastMalloc calls cudaMallocHost to allocate page-locked memory in

CUDA context.

Some info concerning cudaMallocHost from CUDA documentation: the driver tracks

the virtual memory ranges allocated with this function and automatically accelerates calls

to functions such as cudaMemcpy*(). Since the memory can be accessed directly by the

device, it can be read or written with much higher bandwidth than pageable memory

obtained with functions such as malloc().

To lock in CUDA context already allocated host buffer user application should call

cudaHostRegister. Function cudaHostRegister page-locks the memory range specified

by ptr and size and maps it for the device(s) as specified by flags. This memory range

also is added to the same tracking mechanism as cudaHostAlloc(). The pointer ptr and

size must be aligned to the host page size (4 KB).

OS specific page lock functions (like VirtualLock in Windows) don’t work the same

as cudaHostRegister. OS specific page lock functions lock memory for system, but

CUDA context knows nothing about this memory. So that memory cannot be accessed

directly by the device because device knows nothing about it.

ImportFromDevice, ExportToDevice adapters are used in the case when user ap-

plication has its own GPU kernels. And it is necessary to communicate between user

kernels and SDK components. Device Adapters also allow to insert user-specific kernels

in a pipeline. Device buffer has to be allocated by cudaMalloc.

Import and Export Adapters make some image transforms. Pipeline supports only

RGB format of color pixel. To process color image with BGR pixel format, Import

Adapter transforms it to RGB. Export Adapter allows to transform internal RGB format

to BGR.

Page 33 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Format of external buffer is shown on Fig.2.

Fig. 2. Surface buffer

Pitch means the size of image row in Bytes. It is possible to have padding after row

pixels. To get good performance, it is necessary that every image row has to be aligned on

4-bytes boundary. This is important for both Host and Device buffers. If user application

uses bigger alignments (e.g. 8, 16, 32 or more) it will not influence on performance.

4.5 Pipeline Surface Format

There are several surface types supported in FASTVIDEO SDK: FAST I8,

FAST RGB8, FAST I10, FAST I12, FAST RGB12, FAST I14, FAST I16, FAST RGB16,

FAST BGR8, FAST BGRX8. Surface FAST I is a grayscale or Bayer filtered image, sur-

face FAST RGB is a color image with components order as R0G0B0 R1G1B1 R2G2B2 etc.

The number in a surface format name means bits per channel.

The following table describes all supported formats in terms of number of channels,

bits per channel, max channel values, Bytes per channel.

Page 34 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Surface Type
Number

of Channels

Bits

per channel

Max

Channel Value

Bytes

per channel

FAST I8 1 8 255 1

FAST RGB8 3 8 255 1

FAST I10 1 10 4095 2

FAST I12 1 12 4095 2

FAST RGB12 3 12 4095 2

FAST I14 1 14 65535 2

FAST I16 1 16 65535 2

FAST RGB16 3 16 65535 2

Bytes per pixels = {Bytes per channel} × {Number of Channels}

Surface format FAST BGR8 is supported by SDK but it is converted by importer or

exporter (ImportFrom or ExportTo) to FAST RGB8.

Surface format FAST BGRX8 is supported by SDK but it is converted by importer

or exporter (ImportFrom or ExportTo) to FAST RGB8. Alpha channel of FAST BGRX8

is lost during import and populated by zero during export.

Surface formats FAST CrCbY8, FAST YCbCr8 are defined but have not supported

yet.

Surface FAST I10, FAST I14 are aliases for FAST I12, FAST I16 respectively. Only

few components support these formats. Main role of these surfaces is to import raw 10-

and 14 bits-per-channel images to pipeline and to perfrom conversion automatically.

Pipeline surface format is initiated by the First component (ImportFrom* or JpegDe-

coder) which has surface format as input parameter. Every Central component gets sur-

face format from the previous component through Link Buffer. Some components remain

surface format unchanged and other components have different output surface formats.

So output surface format of the pipeline may differ from initial one. Last components

ExportTo* have output surface format as output parameter in Create method. It allows

Page 35 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

to know the type of the surface and to allocate appropriate buffer.

8-bit surfaces are supported by all components in the current version of SDK. 12/16-

bit surfaces are supported by a few components. So general approach for 12/16-bit surfaces

is the following:

1. At the beginning of the pipeline, 12/16-bit components could be used.

2. If the next component supports only 8-bit surfaces, then LUT component should

be used to transform 12/16-bit data to 8-bit format.

3. At the end of the pipeline 8-bit components should be used.

If the component doesn’t support input surface, then its Create method returns

FAST UNSUPPORTED FORMAT.

Table below lists all components and subcomponents with supported types

Input surface formats
Component/subcomponent

Grayscale Color

Affine 8, 12, 16 8, 12, 16

Bayer Splitter 8, 12, 16

Bayer Merger 8, 12, 16

Crop 8, 10, 12, 14, 16 8, 12, 16

Debayer HQLI 8, 12, 16

Debayer L7 8, 12, 16

Debayer Binning 8, 16

Debayer DFPD 8, 12, 16

Debayer MG 12, 16

Image Filter: Base Color Correction 8, 12, 16 8, 12, 16

Page 36 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Input surface formats
Component/subcomponent

Grayscale Color

Image Filter: Bayer black shift 12, 16

Image Filter: Binning filter 12, 16

Image Filter: Flat-field correction 12, 16

Image Filter: Color Saturation {HSL, HSV} 8, 12, 16

Image Filter: Gaussian sharpen 8 8

Image Filter: LUT 8 {8,12,16} 8 8

Image Filter: LUT 8 {8,12,16} C 8

Image Filter: LUT 12 {8,12,16} 12 12

Image Filter: LUT 12 {8,12,16} C 12

Image Filter: LUT 16 {8,16} 16 16

Image Filter: LUT 16 16 FR 16 16

Image Filter: LUT 16 {8,16} C 16

Image Filter: LUT 16 16 FR C 16

Image Filter: LUT 8 16 BAYER 8

Image Filter: LUT 10 16 BAYER 10

Image Filter: LUT 12 16 BAYER 12

Page 37 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Input surface formats
Component/subcomponent

Grayscale Color

Image Filter: LUT 14 16 BAYER 14

Image Filter: LUT 16 16 BAYER 16

Image Filter: LUT 16 16 FR BAYER 16

Image Filter: LUT RGB 3D 12, 16

Image Filter: LUT HSV 3D 12, 16

Image Filter: MAD 8, 10, 12, 14, 16

Image Filter: MAD16 10, 12, 14, 16

Image Filter: Median Filter 12, 16 12, 16

Image Filter: White Balance 8, 12, 16

Image Filter: Tone Curve 16

JPEG Encoder 8, 12 8, 12

JPEG Decoder 8 8

Resizer 8, 12, 16 8, 12, 16

Surface Converter: BIT DEPTH 8, 10, 12, 14, 16 8, 12, 16

Surface Converter: SELECT CHANNEL 8, 12, 16

Surface Converter: RGB TO GRAYSCALE 8, 12, 16

Page 38 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Input surface formats
Component/subcomponent

Grayscale Color

Surface Converter: GRAYSCALE TO GRAYSCALERGB 8, 12, 16

Surface Converter: GRAYSCALE TO RGB 12, 16

Surface Converter: BAYER TO RGB 8

That table lists all components and subcomponents that transform pipeline surface

types

Transformation
Component/subcomponent

Color Bits

Debayer I → RGB

Image Filter: {LUT 8 12, LUT 8 12 C} 8 → 12

Image Filter: {LUT 8 16, LUT 8 16 C} 8 → 16

Image Filter: {LUT 12 8, LUT 12 8 C} 12 → 8

Image Filter: {LUT 12 16, LUT 12 16 C} 12 → 16

Image Filter: {LUT 16 8, LUT 16 8 C} 16 → 8

Image Filter: LUT {8,10,12,14} 16 8, 10, 12, 14 → 16

SurfaceConverter: BIT DEPTH 8, 10, 12, 14, 16 → 8, 12, 16

Page 39 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Transformation
Component/subcomponent

Color Bits

Surface Converter: SELECT CHANNEL RGB → I

Surface Converter: RGB TO GRAYSCALE RGB → I

Surface Converter: GRAYSCALE TO GRAYSCALERGB I → RGB

Surface Converter: GRAYSCALE TO RGB I → RGB

Surface Converter: BAYER TO RGB I → RGB

4.6 Pipeline Split and Merge

In terms of SDK pipeline, split is a case when two or more components use the

same buffer as an input. That operation allows to split data processing for multiple path.

For example split can be used for debug purposes. Export to Host component could

be attached to output buffer of debugging component together with the next central

component.

Central component at any pipeline does not modify input buffer. But there are

some output components which change input buffer: JPEG Encoder and Debayer. If

after splitting one of components is changing its input buffer, then this transform method

should be called last.

Sometimes it is necessary to bypass a certain component in the pipeline. In this case,

multiplexer (Mux) component should be used. Mux selects one of its inputs and passes

data to output. Transform method of Mux takes number of inputs that will be passed to

output.

Page 40 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Fig. 3. Debug Pipeline

Fig. 4. Bypass Pipeline

4.7 Component recreation

Sometimes we need to recreate a component in the existing pipeline. Functions

ChangeSrcBuffer allows to avoid whole pipeline recreation in this case. ChangeSrcBuffer

function sets new source buffer for the component. So to insert a new component instead

of existing component in a pipeline, destination buffer of created component has to be set

as a source for the next component through ChangeSrcBuffer function.

4.8 Threads, Streams and Performance

SDK is compiled with CUDA option “–default-stream per-thread”. It means that

every CPU thread has its own CUDA stream. SDK does not use CUDA default stream.

So SDK pipeline has no influence on CUDA kernel in either default or custom stream. If

user kernel has started without stream specification in the same thread, it will share the

stream with SDK kernels.

Page 41 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Individual stream for each thread gives an ability to run multiple pipelines con-

currently. In general, each pipeline has import, computation, and export components.

Concurrent execution of pipelines allows to overlap computations from one pipeline with

data transfer from another pipeline.

Fig. 5. Overlapping device-to-host, host-to-device transfers and computation

Concurrent pipelines also increase GPU utilization by decreasing a time when GPU

is idle. GPU that has two copy engines (some high range GeForce, Titan, Tesla and

Quadro) can overlap host-to-device transfer and device-to-host transfer from concurrent

pipelines. Kernels with small amount of workloads can be overlapped also. Figure 5 is a

screenshot from NVIDIA Visual Profiler which shows overlap for device-to-host, host-to-

device transfers and computation. That GPU has two copy engines.

Concurrent pipelines increase overall system performance but also increase latency.

If you need to get pipeline result as quickly as possible, then concurrent pipelines and

multi threading are not suitable.

Also concurrent pipelines are increasing device memory usage. Each pipeline has its

own data set. So four pipelines use almost four times more memory than just one. But

some service information is shared between pipelines. So four separate processes with one

pipeline consume even more device memory.

In most cases the best choice is two concurrent pipelines. This is the way to overlap

Page 42 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

device-to-host and host-to-device transfers together with computations, and get significant

performance boost. More concurrent pipelines (3 or greater) on the same GPU can be

even better in the case when we need to process small images (Full HD resolution or less).

4.9 Multi GPU

SDK can be used in a multi GPU system. That case intended for hardware setups

with multiple GPUs and user has to manually adjust workload between GPUs.

SLI interconnection does not offer any benefits.

Default scenario for Multi GPU system is to create a separate pipeline for each GPU.

User need to create CPU thread for each GPU and then call cudaSetDevice to assign GPU

for each CPU thread. After that, user can create pipelines individually for each GPU.

4.10 Debayer

Debayer module restores image colors from Bayer filtered source image according to

the pattern. There are 4 supported patterns – RGGB, BGGR, GRBG and GBRG; where

R stands for red, G – green, B – blue. Enum fastBayerPattern t contains all supported

patterns.

At the moment there are five implemented Debayer algorithms (types): Binning,

HQLI, L7, DFPD and MG. These algorithms are enumerated in fastDebayerType t.

List of debayer ordered by quality (first is the best): MG, DFPD, L7, HQLI. This is the

list of debayers ordered by performance (the first is the best): HQLI, L7, DFPD, MG.

HQLI debayer algorithm is working with window 5× 5, L7 – 7× 7, DFPD – 11× 11,

MG – 23× 23.

Debayer supports 8/12/16-bit formats (MG supports 12/16 only). All debayers sup-

port only image with even width. User has to crop odd width by 1 pixel.

Binning debayer restores color by calculating average value of Bayer pattern. There-

fore it reduces the size of image by binning factor. There are three supported binning

factors: 2, 4, 8. If binning factor is equal to 2, then red and blue colors of pixel are

taken from red and blue colors of Bayer pattern respectively and green color of the pixel

is an average of two green values of Bayer pattern. If binning factor equals 4, then four

neighboring Bayer patterns are taken for averaging and so on.

Debayer module changes pipeline surface format. Initial surface format is

FAST I{8,12,16} before Debayer, and after Debayer format becomes FAST RGB{8,12,16}
respectively. Debayer changes format from gray to color, and after debayering we finally

Page 43 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

get three color components (RGB) per pixel instead of one (Gray). At the same time,

number of bits per each color component is not changed. For example, if input format

has 16 bits per color component, then output format will have 16 bits per each color

component of the pixel as well.

The function fastDebayerCreate creates Debayer component. Input parameters

for this function are the following: maximum image size and name (type) of De-

bayer algorithm. Instance of Debayer component is associated with a handle which

returns fastDebayerCreate function. Function fastDebayerCreate also allocates all

necessary buffers in GPU memory. In case GPU does not have enough free memory,

fastDebayerCreate returns FAST INSUFFICIENT DEVICE MEMORY status. Customer ap-

plication has to detect and to process that status correctly. Enum fastStatus t contains

all statuses.

Function fastDebayerTransform performs debayering according to initial parame-

ters. That function takes image size and bayer pattern as parameters.

4.11 Spatial Denoiser

Spatial Denoiser module is based on Discrete Wavelet Transform (DWT) and removes

spatial noise from images according to specified parameters: wavelet name, thresholding

function, number of DWT resolution levels, array of threshold values, etc. Denoise sup-

ports grayscale and color images. Also it supports separated planes of Bayer filtered

image.

For color images, Spatial Denoiser converts data to YCbCr and performs denoising

for these components separately. We recommend to apply the same parameters both to

Cb and Cr components to avoid false colors after denoising.

At the moment there are two implemented wavelets for Spatial Denoiser: CDF53 and

CDF97. These wavelets are enumerated in fastWaveletType t. They have comparable

quality, but CDF53 shows better performance.

Thresholding function could be Hard, Soft or Garrote. These functions correspond

to different algorithms of threshold approximation.

Spatial Denoiser supports the following surfaces: FAST RGB8, FAST I8, FAST RGB12,

FAST I12, FAST RGB16, FAST I16.

Function fastDenoiserCreate creates Spatial Denoiser component. Input pa-

rameters for this function are the following: maximum image size and static parame-

ters. Instance of Spatial Denoiser component is associated with a handle which returns

Page 44 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastDenoiserCreate function.

Static parameters for denoiser are incapsulated by denoise static parameters t

struct. It contains wavelet name and type of threshold function. Types of threshold

function are enumerated in fastDenoiseThresholdFunctionType t.

Function fastDenoiserTransform performs spatial denoising according to initial

static and current dynamic parameters. Dynamic parameters for denoiser are the follow-

ing:

� dwt levels – number of DWT transforms (maximum is 11)

� enhance[3] – gain coefficients for each channel of YCbCr. Applied after threshold

function to wavelet coefficient.

� threshold[3] – basic threshold for Y, Cb and Cr channels respectively.

� threshold per level[33] – individual relative thresholds for each wavelet band. The

first three values in the array correspond to values of Y, Cb and Cr of the first band.

Resulting threshold for each wavelet band of channel is multiplication of threshold

by respective threshold per level.

Resulting threshold is applied to wavelet coefficient through threshold function multipliers

for threshold per level for Y, Cb and Cr. Total threshold is equal to the result of

threshold per level× threshold

for each band and each color channel.

The fastDenoiserTransformBayerPlanes processes distinct color planes of Bayer

filtered image prepared by Bayer Splitter component. It filters each planes separately.

Resulted planes have to be merged to one color image by Bayer Merger component.

Calling the function for normal grayscale image will cause image destruction. So the only

way of using denoise component with the function is as part of pipeline, where preceding

component is Bayer Splitter and the following component is Bayer Merger component.

4.12 JPEG Load and Store functions

SDK includes set of functions to load and store JPEG files. These are six functions

for load and two functions for store:

� fastJfifLoadFromFile,

� fastJfifHeaderLoadFromFile,

� fastJfifBytestreamLoadFromFile,

Page 45 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� fastJfifLoadFromMemory,

� fastJfifHeaderLoadFromMemory,

� fastJfifBytestreamLoadFromMemory,

� fastJfifStoreToFile,

� fastJfifStoreToMemory.

These functions are not a pipeline components because they work on CPU only. You can

find them in \common\helper jpeg\folder.

Load functions parse JPEG file and save data to fastJfifInfo t struct the following

JPEG entities:

� image width and height

� restart interval

� quantization tables

� Huffman tables

� EXIF sections

� Huffman bytestream

Functions fastJpegHeaderLoad* allow decode only header to populate fastJfifInfo t.

For example, to get JPEG file width and hight. Functions fastJpegBytestreamLoad*

extract Huffman bytestream to fastJfifInfo t.

Load functions can parse only JPEG files supported by SDK JPEG Decoder. If

format of JPEG file is not supported (for example, 12-bit JPEG, JPEG with arithmetic

coding or progressive JPEG), then function returns FAST UNSUPPORTED FORMAT. If any

error occurs during file parsing, then function returns FAST INVALID FORMAT and puts

error description to stderr.

There are two storages for Load/Store functions: file or memory buffer. Memory

buffer as a storage is useful for applications that send/receive JPEG images via network.

Memory buffers for fastJfifLoadFromMemory and fastJfifStoreToMemory are al-

located by original C malloc.

Please note that buffer for Huffman bytestream in fastJfifInfo t has to be

allocated by user application with fastMalloc. Size of allocated buffer is set to

bytestreamSize in fastJfifInfo t. If size of h Bytestream is smaller than size of

bytestream of loaded image, then the function returns FAST INVALID SIZE.

Store functions serialize fastJfifInfo t struct to file or memory buffer.

There are two JPEG file formats: JFIF and EXIF. EXIF format allows to store

camera meta data, copyright, author information and other.

Page 46 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Load and Store functions can read and write EXIF sections. In general, JPEG file

can include multiple EXIF sections, so in fastJfifInfo t there is a pointer to EXIF

section array exifSections. Count element in array is stored in exifSectionsCount.

Struct fastJpegExifSection t contains EXIF section code, buffer for EXIF data that

starts with EXIF section code and size of EXIF data.

Load functions allocate all buffers for EXIF sections. So after EXIF sections no

longer need, then user application has to free all EXIF section buffers by free. In other

case memory will leak.

Load/store functions work with entire section. To extract tag we propose to use

an existing library, for example libexif. Example of using libexif with SDK load/store

functions you can find in JpegSample and BayerCompressionSample.

Allocated fastJfifInfo t for JPEG encoder has to be initialized by

exifSectionsCount = 0 and exifSections = NULL.

4.13 JPEG Encoder/Decoder

JPEG Encoder compresses grayscale and color images into JPG format with different

options. Current GPU JPEG Encoder supports images with 8 and 12 bits-per-channel.

GPU JPEG Decoder supports only 8 bits-per-channel images. JPEG CPU Decoder com-

ponent is a temporary solution for decoding of images with 12 bits-per-channel. This

component is a wrapper around open source libjpeg-turbo library.

It is important to note that there are no additional parameters to enable 12-bit

encoder. The same encoder component and interface functions are used for both 8-bit

and 12-bit encoders. Encoder type is selected automatically by bit depth of input surface.

JPEG Encoder supports three color subsampling formats: JPEG 444, JPEG 422,

and JPEG 420. The ratios at which the chroma subsampling are usually done for JPEG

images are 4 : 4 : 4 (no chroma downsampling), 4 : 2 : 2 (reduction by a factor of 2

in the horizontal direction for components Cb and Cr), or (most commonly) 4 : 2 : 0

(chroma reduction by a factor of 2 in both horizontal and vertical directions). Enum

fastJpegSubsamplingFormat t contains all supported subsampling formats.

To compress grayscale image, subsampling format has to be JPEG Y. Also there is an

option to compress grayscale image as color. In this case JPEG encoder duplicates gray

channel to all color channels. To enable this feature, input image should be gray and

subsampling format should be JPEG 420.

Quality parameter adjusts output JPEG file size and image quality. Quality is an

Page 47 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

integer value from 1 to 100, where 100 means the best quality and maximum image

size. Recommended value for JPEG Quality is 90 (this is so called “visually lossless

compression”).

Restart Interval is an integer number of MCUs (Minimum Coded Unit) processed as

an independent sequence within a scan. Current JPEG Encoder has fixed restart interval

for each subsampling mode. For subsampling 4 : 2 : 0 restart interval is 5, subsampling

4 : 2 : 2 has restart interval 8, subsampling 4 : 4 : 4 has restart interval 10, for grayscale

images this is 32. Please note that Restart Interval = 5 means one restart marker after

each five MCUs. These restart intervals are optimal to achieve best JPEG Encoder

performance.

If any error occurs during procedure calls, it returns status not equal to JPEG OK and

which will appear in stderr description of error.

JPEG Encoder is the Last component in terms of SDK pipeline. Its output is struc-

ture fastJfifInfo t that resides in CPU memory.

Function fastJpegEncoderCreate creates JPEG Encoder. It takes maximum im-

age size. Instance of created JPEG encoder is associated with a handle which returns

fastJpegEncoderCreate function. Function fastJpegEncoderCreate also allocates all

necessary buffers in GPU memory. So in case when GPU does not have enough free

memory, fastJpegEncoderCreate returns status FAST INSUFFICIENT DEVICE MEMORY.

Function fastJpegEncode compresses images taken from previous component of the

pipeline with defined quality and populates fastJfifInfo t with JPEG bytestream and

JPEG tables. Buffer for JPEG bytestream in fastJfifInfo t has to be allocated before

call. Its recommended size is surfaceHeight*surfacePitch4. Real JPEG bytestream size is

calculated during compression and put to bytestreamSize in fastJfifInfo t. If size of

h Bytestream is not enough, procedure returns status FAST INTERNAL ERROR.

Function fastJpegEncodeAsync acts the same as fastJpegEncode but stores com-

pressed bytestream to device memory. It takes fastJfifInfoAsync t instead of

fastJfifInfo t as a parameter. Structure fastJfifInfoAsync t is the same as

fastJfifInfo t except d Bytestream that points to device memory. Important that

d Bytestream is not allocated by user. It points to internal buffer in JPEG Encoder.

So data from d Bytestream should be coped from before next fastJpegEncodeAsync

call. To store bytestream to file user should copy all fastJfifInfoAsync t fields to

fastJfifInfo t. Also it has to copy data from device to host by standard CUDA copy

functions (see JpegAsyncSample).

JPEG Decoder is the First component in terms of SDK pipeline. Its input is struct

Page 48 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastJfifInfo t that resides in CPU memory.

Function fastJpegDecoderCreate creates JPEG Decoder. It takes maximum image

size and output surface format as parameters (FAST I8 or FAST RGB8). Instance of created

JPEG Decoder is associated with a handle which returns fastJpegDecoderCreate func-

tion. Function fastJpegDecoderCreate also allocates all necessary buffers in GPU mem-

ory. So in case when GPU does not have enough free memory fastJpegDecoderCreate

returns status FAST INSUFFICIENT DEVICE MEMORY.

Function fastJpegDecode uncompresses image from fastJfifInfo t taken from

previous JPEG Load function.

Restart Interval has great impact on decoding performance. Optimal restart in-

terval for decoder is 1 (one restart marker after each MCU). So even jpg images from

FASTVIDEO JPEG Encoder don’t have enough markers to get maximum performance.

If jpg image does not contain any markers or if restart interval is greater than 255, then

CPU version of Huffman decoder will be used.

Utility jpegtran can change a number of restart markers in existing jpg image. Jpeg-

tran is a part of libjpeg library.

The first step: we need to clear up the image from existing restart markers

jpegtran.exe -copy none image\_src.jpg image\_dest.jpg

At the end we get the image without restart markers.

The second step: we need to insert necessary amount of restart markers

jpegtran.exe -restart 1B image.jpg image\_new.jpg

At the end we get the new image with 1 restart marker after each block (MCU).

4.14 JPEG CPU Decoder

JPEG CPU Decoder component is a temporary solution for decoding of 12 bits-per-

channel images. This component is a wrapper around open source libjpeg-turbo library

that is compiled with BITS IN JSAMPLE = 12. That’s why that CPU Decoder does not

support 8-bit JPEG images.

JPEG CPU Decoder is not included in primary SDK library. It is delivered in

separate dll – fastvideo jpegCpuDecoder.dll. Please note that libjpeg interface of CPU

Decoder is different from GPU Decoder.

Function fastJpegCpuDecoderCreate creates JPEG CPU Decoder. It takes max-

imum image size and outputs surface format as parameters (FAST I12 or FAST RGB12).

Page 49 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Function returns FAST UNSUPPORTED SURFACE if surface parameter was set FAST I8 or

FAST RGB8.

Function fastJpegCpuDecode decompresses JPEG images. It takes buffer for entire

file with header. Function puts uncompressed surface to its device surface buffer and puts

other JPEG parameters to fastJfifInfo t struct. Decoder returns FAST IO ERROR if

8-bit JPEG image is supplied as an input.

4.15 JPEG2000 Encoder/Decoder

JPEG2000 Encoder compresses grayscale and color images into JP2 format using

lossy or lossless algorithm with different options. Current encoder and decoder support

images with 8–16 bits per channel.

JPEG2000 Decoder supports three popular color subsampling formats: 4 : 4 : 4 (no

chroma downsampling), 4 : 2 : 2 (reduction by a factor of 2 in the horizontal direction for

components Cb and Cr), or (most commonly) 4 : 2 : 0 (chroma reduction by a factor of

2 in both horizontal and vertical directions).

Quality parameter adjusts output JP2 file size and image quality. Quality is a

floating-point value from 0 to 100 (which is nonlinearly related to the quantization coeffi-

cient), where 100 means no quantization and maximum image size. Recommended value

for Quality parameter is 85 (visually lossless compression in most cases).

If any error occurs during procedure call, it returns status not equal to FAST OK and

description of the error will appear in stderr.

JPEG2000 Encoder is the last component in terms of SDK pipeline. Its input must

reside in GPU memory, while output resides in CPU memory.

Function fastEncoderJ2kLibraryInit should be called before any other call to

encoder function in a program.

Function fastEncoderJ2kCreate creates JPEG2000 Encoder. It takes maximum

image size. Instance of created JPEG2000 encoder is associated with a handle which is

returned by fastEncoderJ2kCreate function. Function fastEncoderJ2kCreate also al-

locates all necessary buffers in GPU memory. So, in case when GPU does not have enough

free memory, fastEncoderJ2kCreate returns status FAST INSUFFICIENT DEVICE MEMORY.

Function fastEncoderJ2kTransform compresses image taken from the previous com-

ponent of the pipeline with user-defined quality, returns fastEncoderJ2kOutput t struc-

ture with JPEG2000 bytestream and fastEncoderJ2kReport t structure with report.

Buffer for JPEG2000 bytestream in fastEncoderJ2kOutput t has to be allocated be-

Page 50 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fore the call. Actual JPEG2000 bytestream size is calculated during compression and

put to the field streamSize in fastEncoderJ2kOutput t. If bufferSize is too small,

bytestream is truncated.

Functions fastEncoderJ2kAddImageToBatch, fastEncoderJ2kTransformBatch and

fastEncoderJ2kGetNextEncodedImage are used to compress multiple images simul-

taneously in the batch mode. First, images are added one by one to a batch us-

ing fastEncoderJ2kAddImageToBatch function until maxBatchSize is reached. Af-

ter that, fastEncoderJ2kTransformBatch is used to process the batch and to

get the first compressed image. The rest of the images are returned sequen-

tially by fastEncoderJ2kGetNextEncodedImage. When all compressed images are

returned, images for the next batch can be passed for processing. Function

fastEncoderJ2kFreeSlotsInBatch can be used to determine how many more images

can be added to the batch. Function fastEncoderJ2kUnprocessedImagesCount can be

used to determine how many images in the batch are ready to be compressed.

Function fastEncoderJ2kDestroy frees all resources allocated by the encoder when

you no longer need to encode images.

JPEG2000 Decoder is the first component in terms of SDK pipeline. Its input must

reside in CPU memory, while output resides in GPU memory.

Function fastDecoderJ2kLibraryInit should be called before any other call to

decoder function in a program.

Function fastDecoderJ2kPredecode allows getting basic parameters of the image,

such as image size, number of components, maximum bit depth etc., from the JPEG2000

main header without decoding the image. These parameters can then be passed to

fastDecoderJ2kCreate in order to pre-allocate an appropriate amount of memory.

Function fastDecoderJ2kCreate creates JPEG2000 Decoder. It takes maximum im-

age size and output surface format as parameters. Instance of created JPEG2000 decoder

is associated with a handle, which is returned by fastDecoderJ2kCreate function. Func-

tion fastDecoderJ2kCreate also allocates all necessary buffers in GPU memory. So, in

case when GPU does not have enough free memory fastDecoderJ2kCreate returns status

FAST INSUFFICIENT DEVICE MEMORY. Function fastDecoderJ2kGetAllocatedGpuMemorySize

can be used to get the amount of GPU memory allocated by this instance of decoder.

Function fastDecoderJ2kTransform decompresses image from CPU memory and

returns fastDecoderJ2kReport t structure with report.

Functions fastDecoderJ2kAddImageToBatch, fastDecoderJ2kTransformBatch and

fastDecoderJ2kGetNextEncodedImage are used to decompress multiple images simul-

Page 51 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

taneously in batch mode. First, images are added one by one to the batch us-

ing fastDecoderJ2kAddImageToBatch function until maxBatchSize is reached. Af-

ter that,fastDecoderJ2kTransformBatch is used to process the batch and to get

the first decompressed image. The rest of the images are returned sequentially by

fastDecoderJ2kGetNextEncodedImage. When all decompressed images are returned, the

next batch can be passed for processing. Function fastDecoderJ2kFreeSlotsInBatch

can be used to determine how many images can be added to the batch. Function

fastDecoderJ2kUnprocessedImagesCount can be used to determine how many images

are ready to be decompressed.

Function fastDecoderJ2kDestroy frees all resources allocated by the encoder when

you no longer need to decode images.

4.16 Timer

Timer component allows to measure time intervals for GPU kernels. For components

that executed only on GPU and don’t copy anything to CPU, the timer component is the

only way to measure time. CPU timer does not get adequate results in this case because

GPU kernel calls are asynchronous.

Timer component is a wrapper for CUDA event. Function fastGpuTimerCreate

creates two CUDA events (start and stop). Function fastGpuTimerStart calls

cudaEventRecord for start event. Function fastGpuTimerStop calls cudaEventRecord

for stop event. Function fastGpuTimerGetTime calls cudaEventSyncronize for stop

event and then calls cudaEventElapsedTime for start and stop events.

For time economy reasons fastGpuTimerGetTime should be called after all calcula-

tions are completed. Otherwise CPU in fastGpuTimerGetTime will have to wait until all

GPU calculations are done instead of running next kernels that affects total execution

time.

GPU Timer has not to be used in case of concurrent pipelines because of great

performance degradation.

4.17 MJPEG Reader/Writer

MJPEG Reader/Writer is a simple wrapper of FFmpeg to read/write MJPEG file in

AVI container. This component is not a part of FASTVIDEO SDK library. It is deployed

as separate hpp/cpp files that placed in ffmpeg wrapper folder.

The Reader is designed to read MJPEG files frame by frame. On initialization, that

Page 52 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

component gets MJPEG file path and tries to open it. If the file is opened successfully,

then user can get info about frame resolution and total number of frames in the file.

Frames from file are read sequentially by function GetNextFrame. When the function

reaches the end of the file, it returns status not equal to FAST OK.

Frame read by GetNextFrame is a standard JPEG file stream. It has a header and

can be decoded by any JPEG Decoder. In our sample applications FASTVIDEO JPEG

Decoder is used.

The Writer is designed to serialize JPEG file to MJPEG container. On initializa-

tion, the component gets MJPEG file path, frame size, frame rate and sampling format.

MJPEG supports only 4:2:0 subsampling format. It is possible to store other subsampling

modes, but in the header only 4:2:0 is stored. All written frames have to be of the same

size. Frame written by WriteFrame function has to be normal JPEG file stream with a

header. JPEG stream is stored to a file without any transformation, so this is fast process

which is limited only by I/O capabilities of the system.

The FfmpegSample demonstrates how to work with MJPEG Reader/Writer.

FASTVIDEO SDK is working with FFmpeg which is under the LGPL v2.1.

FFmpeg is compiled without “–enable-gpl” and without “–enable-nonfree”.

4.18 Affine Transforms

FASTVIDEO SDK supports the following Affine transforms: flip, flop, rotation 180,

rotation left 90, rotation right 90. Enum fastAffineType t contains all supported affine

transforms. Flip transform reverses order of image columns. Flop transform reverses order

of image rows. Rotation 180 degrees reverses order of columns and rows. Rotation 90 left

and 90 right changes image dimension: width becomes equal to height, height becomes

equal to width. So maxWidth and maxHeight of the next component in a pipeline have to

be properly adjusted.

That component supports FAST RGB8 and FAST I8 surfaces.

4.19 Crop component

The component crops image. Region of interest is defined by coordinates of the left

top corner of rectangle and its width and height.

That component supports FAST RGB8, FAST I8, FAST RGB12, FAST I12, FAST RGB16,

FAST I16 surfaces.

Page 53 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

4.20 Image Filter component

Image Filter is a component which includes multiple filters. Image filter in terms of

SDK means any operation that transforms every pixel of image, but does not change

image geometry, size, and bits-per-pixel value. There are five filter groups: LUT,

Sharpen filter, Vector operation, Color correction, Median filter. All filters are listed

in fastImageFilterType t enum. Every filter can have two sets of parameters: static

and dynamic. Static parameters are assigned on creation and can not be changed while

filter is working. Dynamic parameters could be set individually for every processed image.

Some filters have the same static and dynamic parameters. In this case static param-

eters are initial parameters for the filter. Dynamic parameters overload initial parameters

and are locked up in the filter until new dynamic parameters will not be passed. Null

pointer for dynamic parameters means to use previously set parameters.

Filter that has the same static and dynamic parameters can be initialized both in

filter creation and in the first transform. If filter is not initialized neither in creation nor

in the first transform then the first transform returns FAST INVALID VALUE exception.

4.20.1 Base Color Correction

Base Color Correction filter supports FAST I8, FAST I12, FAST I16, FAST RGB8,

FAST RGB12, FAST RGB16 surfaces. Structure fastBaseColorCorrection t defines static

and dynamic parameters for the filter. It contains Color Correction matrix. Color Cor-

rection matrix has 3 rows and 4 columns. In general, for RGB pixel, that operation is

defined in a matrix form as the following:



RR RG RB R0

GR GG GB G0

BR BG BB B0


×



R

G

B

−1



Page 54 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

for grayscale image:



I 0 0 I0

0 0 0 0

0 0 0 0


×



I

0

0

−1



4.20.2 Bayer Black Shift

This filter is applied to Bayer filtered image. It simply subtracts constant value from

each pixel. There are three constants for each RGB channel.

4.20.3 Binning Filter

This filter creates a new pixel based on square group of pixels. There are two modes

of binning: averaging and summing. In the first case, a new pixel is the average of pixels

in a group. In the second case, a new pixel is the sum of pixels in a group. Filter supports

the following square group sizes: 2x2, 3x3, 4x4. Binning factors are aliases for group sizes.

The filter decreases image size by binning factor. For example, if factorX = factorY =

2 then filtered image width and height are half of original image.

Structure fastBinning t is a set of static and dynamic parameters for the filter.

It contains binning operation and binning factors. Filter supports FAST I12, FAST I16

surfaces.

4.20.4 Flat-field correction

This filter used to cancel the effects of image artifacts caused by variations in the

pixel-to-pixel sensitivity of the detector and by distortions in the optical path.

Structure fastFFC t is a set of static and dynamic parameters for the filter. It

contains divider and pointer to sparsed correction matrix. Filter supports FAST I12,

FAST I16 surfaces.

Page 55 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

4.20.5 Color Saturation

Color Saturation filter includes three steps: RGB to {HSL, HSV} transformation,

LUT-based {HSL, HSV} transformation, HSL, HSV to RGB transformation. User defines

three separate LUTs for each {HSL, HSV} channel. Each LUT has 1024 float values.

Interval for H LUT is [0, 360], intervals for S and L LUTs are [0, 1].

LUT-based {HSL, HSV} transformation depends on individual operation for each

channel. There are three types of operation: replace, addition and multiplication. In the

case of replace, operation value from input is replaced by a new value from LUT. In the

case of addition operation, new value is the sum of input value and value from LUT. In

the case of multiplication operation, new value is the product of input value and value

from LUT.

Structure fastColorSaturation t contains static and dynamic parameters for the

filter. It contains three LUTs and three operations. That component supports FAST RGB8,

FAST RGB12, FAST RGB16 surfaces.

4.20.6 Gaussian sharpen filter

Sharpen filter group contains one Gaussian filter with window 3 × 3. There is one

dynamic parameter – sigma (it’s so called “Gaussian kernel radius”). The subcomponent

supports FAST RGB8 and FAST I8 surfaces.

4.20.7 LUT

LUT group contains multiple Lookup Table filters. Lookup Table filter uses input

value as an index in table of new (output) values. Two main parameters for Lookup

table are bit-depth of input and output values. Lookup filter contains one table, that is

common for all color channels, or separate Lookup tables for each color channel. Total

number of Bytes for Lookup table is the following:

2{bit−depth of input value}×{size in bytes of output value}

There are following types of Lookup filters: LUT 8 {8,12,16}, LUT 8 {8,12,16} C,

LUT 12 {8,12,16}, LUT 12 {8,12,16} C, LUT 16 {8,16}, LUT 16 16 FR,

LUT 16 {8,16} C, LUT 16 16 FR C, LUT {8,10,12,14,16} 16 BAYER,

LUT 16 16 FR BAYER. The first number defines bit depth of input value, the second

number defines bit depth of output value. Suffix C means that filter has three Lookup

Page 56 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

tables to apply to RGB channels. Suffix BAYER means that LUT is applied to Bayer

filtered image. Bayer LUTs also have three tables to apply to RGB channels. Bayer LUTs

take additional parameter to identify bayer type {RGGB, GRBG and etc}. Suffix FR

(full range) means that LUT does not use interpolation. The suffix is only applied to

16 16 LUTs. All LUTs have static and dynamic parameters.

Parameters and structures for all LUTs are listed in the table below. Column “tables”

defines a number of tables in a structure. Column “elements” defines a number of elements

in LUT table. Column “type of element” means type of LUT table elements.

Table 3. Description of LUT parameters

LUT
Static and dynamic

parameters
Tables Elements

Type of

element

LUT 8 8 fastLut 8 t 1 256 uchar

LUT 8 8 C fastLut 8 C t 3 256 uchar

LUT 8 {12,16} fastLut 8 16 t 1 256 ushort

LUT 8 {12,16} C fastLut 8 16 C t 3 256 ushort

LUT 8 16 BAYER fastLut 8 16 Bayer t 3 256 ushort

LUT 10 16 BAYER fastLut 10 16 Bayer t 3 1024 ushort

LUT 12 8 fastLut 12 8 t 1 4096 uchar

LUT 12 8 C fastLut 12 8 C t 3 4096 uchar

LUT 12 {12,16} fastLut 12 t 1 4096 ushort

LUT 12 {12,16} C fastLut 12 C t 3 4096 ushort

LUT 12 16 BAYER fastLut 12 16 Bayer t 3 4096 ushort

LUT 14 16 BAYER fastLut 14 16 Bayer t 3 16384 ushort

Page 57 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

LUT
Static and dynamic

parameters
Tables Elements

Type of

element

LUT 16 8 fastLut 16 8 t 1 16384 uchar

LUT 16 8 C fastLut 16 8 C t 3 16384 uchar

LUT 16 16 fastLut 16 t 1 16384 ushort

LUT 16 16 C fastLut 16 C t 3 16384 ushort

LUT 16 16 BAYER fastLut 16 16 Bayer t 3 16384 ushort

LUT 16 16 FR fastLut 16 FR t 1 65536 ushort

LUT 16 16 FR C fastLut 16 FR C t 3 65536 ushort

LUT 16 16 FR BAYER fastLut 16 FR Bayer t 3 65536 ushort

LUT changes bit depth of pipeline surface if LUT’s input bit depth is not equal to

output bit depth.

16-bit LUTs have only 16384 values in a table. Size of LUT’s table is limited by

GPU resources. 14 significant bits of input value are used to identify element in LUT,

and two less significant bits of output are calculated via linear interpolation.

Full range 16-bit LUT have 65536 values in a table and so does not use linear in-

terpolation. It is based on texture memory instead of shared memory in non-full range

LUTs. Non-full range LUTs has beter performance then its full range version.

4.20.8 LUT RGB 3D

RGB 3D LUT is used to map one color space to another. In general 3D LUT is

uniform 3D grid of RGB values. Often this grid is called cube because it has the same

number of elements in all directions. Input RGB value is defined elementary cube in grid.

Trilinear interpolation is used to calculate output RGB value based on the elementary

cube and input RGB value.

Page 58 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Current FASTVIDEO SDK supports arbitrary RGB 3D LUT size with up to 65

elements in one dimension and even more. Structure fastRGBLut 3D t could be both

static and dynamic parameter for the filter. It contains cube 1D size and pointer to LUT.

Memory ordering of elements is according to Adobe CUBE format. This ordering is the

opposite of the typical in-memory order of multi-dimensional tables. An equivalent index

would be

r + N · g + N ·N · b,

where r, g, b are the Red, Green, and Blue indices in the range 0 to N–1.

Component supports FAST RGB12, FAST RGB16 surfaces. Example of RGB 3D LUT

you can find in ComponentSample.

4.20.9 LUT HSV 2D/3D

HSV 3D LUT is used to map one color space to another through HSV transformation.

That component is compatible with lookup table specified in Adobe Digital Negative

Format.

In general HSV LUT is uniform 2D/3D grid of 3-component vectors. Each vec-

tor contains transformation value for channels H, S, V, one element for one channel.

Type of transformation value is float. Type of transformation is defined per channel

(H, S, V) globally. There are three type of transformations: replace, addition, multipli-

cation. In the case of replace operation, value from input is replaced by new value from

appropriate element from the vector. In the case of addition operation, new value is the

sum of input value and value from the vector. In the case of multiplication operation new

value is the product of input value and value from the vector.

Unlike RGB 3D LUT, HSV 3D LUT grid is not a cube. Number of elements per

each axis can be different. Also there is 2D case when number of elements per V axis is

1. 2D LUTs with H = 1 or S = 1 are not supported.

Process steps:

1. Convert RGB pixel to HSV, where H in [0, 360], S in [0, 1], V in [0, 1].

2. Find elementary cube in 3D LUT included input value.

3. Calculate transformation vector by trilinear interpolation of the elementary cube

and input RGB value.

4. Apply transformation operation to input HSV pixel with transformation vector.

5. Convert new HSV pixel to RGB.

Page 59 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Structure fastHsvLut3D t could be both static and dynamic parameter for the filter.

It contains LUT size for each axis, LUT pointer and transformation operation for each

channel. Memory ordering of elements in LUT is according to lookup table ordering at

Adobe DNG format. This ordering is the opposite to the typical in-memory order of

multi-dimensional tables. An equivalent index would be

V + dimV · H + dimV · dimH · S.

Filter supports FAST RGB12, FAST RGB16 surfaces. Example of RGB 3D LUT you

can find in ComponentSample.

4.20.10 Median filter

Median filter group contains one Median filter with window 3 × 3. There is no

parameters for filter. The subcomponent supports FAST RGB12, FAST RGB16, FAST I12,

FAST I16 surfaces.

4.20.11 SAM (subtract and multiply)

SAM filter is a vector operation transforming every pixel according to the equation:

(x− A)×B, (1)

where x – pixel value, A and B are matrices with the same dimensions as image size.

Matrix B is called BlackShiftMatrix, matrix A is called CorrectionMatrix.

There are two SAM filters: SAM and SAM16. Structures fastSam t and

fastSam16 t are static/dynamic parameters for appropriate filters. They contain point-

ers on both matrices. Black shift matrix has char type in fastSam t and short type

in fastSam t. Correction Matrix has float type in both structures. Component SAM

supports all grayscale formats. Component SAM16 supports all grayscale formats except

FAST I8. SAM filter has better performance than SAM16 filter. So if black shift value

does not exceed char limits, better to use SAM.

4.20.12 Tone Curve

Tone Curve filter change image tone according tone curve. Filter algorithm is taken

from Adobe DNG SDK. Tone curve is defined as a LUT table with 1024 values. Interval

for tone curve is [0, 1]. Structure fastToneCurve t is a static or dynamic parameter for

Page 60 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

the filter. It contains LUT of tone curve. Component supports only FAST RGB16 surfaces.

Example of linear tone curve is defined in defaultToneCurve.h in ComponentsSample

folder.

4.20.13 White Balance

White Balance filter supports FAST I8, FAST I12, FAST I16 surfaces for bayer filtered

image. Structure fastWhiteBalance t defines static and dynamic parameters for the

filter. It contains white balance matrix and bayer pattern. White balance matrix defines

by four values: R, G1, G2, B. Bayer patter contains two green values. G1 defines value

for green pixel in the first row, G2 defines value for green value in the second row. Filter

multiplies values from white balance matrix on respective values in the image.

4.21 HDR Builder component

The component downscales and upscales an image. Image scale factor could be

defined in two ways:

1. By defining width of resized image with preserved image aspect ratio.

2. By defining any width and height of resized image.

In the first case, hight of resized image is automatically calculated by image height

and scale factor. Resized height is returned by component to unify rounding process.

In the second case, image aspect ratio is not preserved. User has to define resized

image height as well.

Both cases are used both for downscale and upscale.

The only supported algorithm of resize is Lanczos. Component supports FAST I12

surfaces.

4.22 Resizer component

The component downscales and upscales an image. Image scale factor could be

defined in two ways:

1. By defining width of resized image with preserved image aspect ratio.

2. By defining any width and height of resized image.

In the first case, hight of resized image is automatically calculated by image height

Page 61 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

and scale factor. Resized height is returned by component to unify rounding process.

In the second case, image aspect ratio is not preserved. User has to define resized

image height as well.

Both cases are used both for downscale and upscale.

The only supported algorithm of resize is Lanczos. Component supports FAST RGB8,

FAST I8, FAST RGB12, FAST I12, FAST RGB16, FAST I16 surfaces.

4.23 Bayer Splitter and Bayer Merger components

The main reason why these components were included in SDK is better performance

in common task of saving frames from a camera in real time applications. Camera frame

is Bayer filtered so in common case color has to be restored by Debayer component

and encoded by JPEG Encoder. Encoding each Bayer frame to JPEG directly is not a

good idea. In general, it saves time by excluding Debayer from the pipeline but quality

suffers greatly. JPEG compression algorithm utilizes the fact that brightness in real

picture changed smoothly. This allows to drop height frequency data to get better image

compression. Bayer image has a lot of high frequency data because in one block we have

merged data from three color channels. As a results, JPEG compressed Bayer image has

lower compression ratio and worse quality. To solve that issue, we have to split Bayer

image on four planes with pixels from appropriate channels (R, G1, G2, B). Thus one

Bayer plane is similar to color channel downsampled by two.

The Bayer Splitter component splits Bayer image on four planes and concatenates

them in one column (from top to bottom). Now splitted Bayer image is ready be com-

pressed to JPEG. Height of every concatenated plane is aligned to 8. It is important for

JPEG compression because each plane does not interfere with another. Position of plane

in the column depends on pixel’s position in the pattern and doesn’t depend on Bayer

pattern.

Height of original image can not be taken from height of splitted Bayer filtered image,

so the original height has to be stored to JPEG file in EXIF section. EXIF section is

defined by SplitterExif t structure in ExifInfo.hpp. It contains original image width,

height and bayer pattern. EXIF section ID is 0xFFE1.

The Bayer Merger component restores original image from splitted Bayer image and

EXIF section information.

Page 62 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

4.24 SDI import and export components

Serial Digital Interface (SDI) is a family of digital video interfaces. They are used

for transmission of uncompressed, unencrypted digital video signals.

SDI Import component from FASTVIDEO SDK allows to feed pipeline with data

directly from video interface. There are two types of SDI Import component: one import

data from host, another from device memory. Device import component is designed for

NVDEC (NVIDIA hardware accelerated video decoder) integration which stores decoded

frame to device memory directly.

SDI Export component of SDK allows to store data from the pipeline in appropriate

SDI format. There are two types of SDI Export components: one export data to host and

another to device memory. Device export component is designed for NVENC (NVIDIA

hardware accelerated video encoder) integration which gets encoded frame from device

memory directly.

SDI interface supports multiple video formats listed in fastSDIFormat t. Name

in fastSDIFormat t consists of three parts: FAST SDI prefix, format name and color

transformation suffix. Color transformations to convert RGB to YCbCr and vice versa.

There are four suffixes: BT601 FR, BT601, BT709, BT2020. Color transformations will be

described later.

In the future the number of supported formats will be increased by user demand. A

list of supported formats for import/export is presented in the following table.

Import from Export to
Name

Host Device Host Device

NV12 + + + +

YV12 + + + +

420 8 YCbCr PLANAR + + + +

P010 + + + +

420 10 YCbCr PLANAR + + + +

Page 63 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Name
Import from Export to

Name

Host Device Host Device

444 8 YCbCr PLANAR + + + +

444 10 YCbCr PLANAR + + + +

422 8 CbYCrY + + + +

422 8 CrYCbY + + + +

422 10 CbYCrY PACKED + − + −

RGBA + + + +

RGB 10 BMR10L + − + −

RGB 10 BMR10B + − + −

RGB 12 BMR12B + − + −

RGB 12 BMR12L + − + −

Information about supported YCbCr formats is presented in the next table. Layout

defines how pixels or blocks of pixels reside in memory and which pixels/subpixels are

contained by block of pixels. Layouts also include color ordering which means order of

color subpixels in block of pixels. All layouts will be described later.

Subsampling defines chroma subsampling type applied to YCbCr image. Byte per

value defines number of bytes for each subpixel. Bits per value defines number of valuable

bits. Zero defines which bits will be zero if subpixel uses less bits than possible. For

example, format has two bytes per value but uses only 10 bits. In this case 10 valuable

bits can be moved to most significant bits or to less significant bits. Less significant bits

and most significant bits will be zeroed appropriately. So MSB in Zero column means

Page 64 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

that value moved to less significant bits and most significant bits are zero.

Name Layout
Sub-

sampling

Bytes

per value

Bits

depth
Zero

NV12 Y + MixedCbCr 420 1 8

P010 Y + MixedCbCr 420 2 10 LSB

YV12 Planar YCrCb 420 1 8

420 8 YCbCr PLANAR Planar YCrCb 420 1 8

420 10 YCbCr PLANAR Planar YCbCr 420 2 10 MSB

422 8 CbYCrY Pixel422 CbYCrY 422 1 8

422 8 CrYCbY Pixel422 CrYCbY 422 1 8

444 8 YCbCr PLANAR Planar YCbCr 444 1 8

444 10 YCbCr PLANAR Planar YCbCr 444 2 10 LSB

Information about supported RGB formats is presented in the following table. All

supported RGB formats are pixel formats. Bits per value defines number of valuable bits.

Packed means if pixels share one byte. In unpacked format one byte contains only one

pixel.

Name Packed Bits depth

RGBA - 8

RGB 10 BMR10L + 10

RGB 10 BMR10B + 10

Page 65 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Name Packed Bits depth

RGB 12 BMR12L + 12

RGB 12 BMR12B + 12

The following table shows source surface formats for export and destination surface

formats for import. Also it shows additional static parameters.

Name
Export from

surface formats

Import to

surface format

Export static

parameter

NV12 FAST RGB8 FAST RGB8

YV12 FAST RGB8 FAST RGB8

420 8 YCbCr PLANAR FAST RGB8 FAST RGB8

P010
FAST RGB12,
FAST RGB16

FAST RGB12 fastSDIYCbCrExport t

420 10 YCbCr PLANAR
FAST RGB12,
FAST RGB16

FAST RGB12 fastSDIYCbCrExport t

422 8 CbYCrY FAST RGB8 FAST RGB8

422 8 CrYCbY FAST RGB8 FAST RGB8

422 10 CbYCrY PACKED
FAST RGB12,
FAST RGB16

FAST RGB12 fastSDIYCbCrExport t

444 8 YCbCr PLANAR FAST RGB8 FAST RGB8

444 10 YCbCr PLANAR
FAST RGB12,
FAST RGB16

FAST RGB12 fastSDIYCbCrExport t

RGBA FAST RGB8 FAST RGB8 fastSDIRGBAExport t

Page 66 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Name
Export from

surface formats

Import to

surface format

Export static

parameter

RGB 10 BMR10L
FAST RGB12,
FAST RGB16

FAST RGB12

RGB 10 BMR10B
FAST RGB12,
FAST RGB16

FAST RGB12

RGB 12 BMR12L
FAST RGB12,
FAST RGB16

FAST RGB12

RGB 12 BMR12B
FAST RGB12,
FAST RGB16

FAST RGB12

10-bit format can be exported from 12-bit and 16-bit surface formats. The SDI

component automatically converts every pixel value to a target bit depth. In some cases

in the surface we could store image with lower bit depth than surface format defined. For

example, in 12-bit format we can store 10-bit data. Structure fastSDIYCbCrExport t

allows to path arbitrary bits depth for correct automatic convertion.

Fig. 6. Layout Pixel 422 YCbCr

Lets discuss SDI YCbCr format layout. There are three layouts: Pixel 422, Planar

YCbCr, Y + Mixed CbCr. Also there is packed YCbCr format.

Layout Pixel 422 is a simple YCbCr format with 422 subsampling. Block of pixels

contains 2 pixels (2 columns per 1 row) or 4 Bytes. We have individual Y component for

each source pixel and average color components – Cb and Cr. Figure 6 shows block of

pixels in source image and its position in memory.

Notation CbYCrY means that 4 Bytes in block from less to most significant Bytes

contain CbY1CrY2 subpixels, CrYCbY respectively CrY1CbY2.

Page 67 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Fig. 7. Layout Planar YCbCr with 420 subsampling

Fig. 8. Layout Y + Mixed CbCr

Layout Planar YCbCr supports all type of subsampling (4:4:4, 4:2:2, 4:2:0 and etc).

There are three planes: Y, Cb, Cr. Luminance plane (Y) has the same size as original

image. Chrominance planes (Cb and Cr) are downscaled respectively to subsampling. For

example for 4:2:0, chrominance value corresponds to one block (2 rows by 2 columns) of

original image. Figure 7 shows color planes for 4:2:0 subsampling in memory.

Layout Y + Mixed CbCr is YCbCr hybrid format with 4:2:0 subsampling. There are

two planes: Y, Cb/Cr. Luminance plane (Y) has the same size as original image. Each

chrominance value corresponds to one block (2 rows by 2 columns) of original image.

Combined Cb/Cr plane contains alternated Cb and Cr pixels. So Cb/Cr plane width is

equal to original image width and its height is downscaled by two times. Figure 8 shows

color planes in memory array.

Packed format 422 10 CbYCrY has 10 bits per value. It is alias for Black Magic

‘v210’ 4:2:2. Pixel pattern is repeated each 32 bytes. So image width has to be aligned

on 6 pixels bound. Figure 9 shows pexel pattern in memory.

There are unpacked and packed RGB and RGBA formats. Pixel RGBA is simple

format with 4 bytes per pixel for better OpenGL integration. Less significant byte in int

Page 68 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

is R then G and B. Most significant byte in it is Alpha channel. Alpha channel value can

be filled by zero or FF. It is defined by fastSDIRGBAExport t structure.

Packed RGB format used for 10 and 12 bits images. Current list of supported

packed RGB formats are RGB 10 BMR10L, RGB 10 BMR10B, RGB 12 BMR12L,

RGB 12 BMR12B. Formats ended by suffix L use little endian byte order. Formats ended

by suffix B use big endian byte order. These formats were added to SDK to integrate

with Blackmagic DeckLink API.

Packed RGB formats RGB 10 BMR10L and RGB 10 BMR10B have 10 bits per value

and 4 bytes per pixel. There is no align limitation on image width.

Packed RGB formats RGB 12 BMR12L and RGB 12 BMR12B have 12 bits per value

and 45 bytes per 8 pixels. So image width has to be aligned on 8 pixels bound.

Fig. 9. 422 10 CbYCrY (bmdFormat10BitYUV : ‘v210’ 4:2:2 Representation)

Page 69 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Fig. 10. RGB 10 BMR10L (bmdFormat10BitRGBXLE : ‘R10l’ 4:4:4 raw)

Fig. 11. RGB 10 BMR10B (bmdFormat10BitRGBX : ‘R10b’ 4:4:4 raw)

By default all extracted or imported data store in continuous region of device or host

memory. Each row in the plane of layout is aligned to the closest 4 Bytes boundary. Pitch

means the size of image row in Bytes. Pitch for each plane depends on plane’s width. So,

for example, pitches for Y and Cb/Cr planes are different for Planar YCbCr with 4:2:0

subsampling layout.

Packed format 422 8 CbYCrY, 422 8 CrYCbY, 422 10 CbYCrY PACKED support

CopyPacked method for import. This method allows to override row pitch. CopyPacked

maethod for export will be added by user request.

SDI component supports import from memory layout where each plane stored in

separate memory blocks. Also the same functionality there is for export to memory.

This is implemented by function with suffix Copy3. Functions take three pointers on

fastChannelDescription t structure which describes plane or channel. Each channel

has its own pointer, pitch, width and height.

Page 70 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Fig. 12. RGB 12 BMR12L (bmdFormat12BitRGBLE : ‘R12L’)

Page 71 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Fig. 13. RGB 12 BMR12B (bmdFormat12BitRGBLE : ‘R12B’)

Page 72 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Table 8. SDI formats supported Copy3

Import from Export to
Name

Host Device Host Device

NV12 + + + +

YV12 + + + +

420 8 YCbCr PLANAR + + + +

P010 + + + +

420 10 YCbCr PLANAR + + + +

444 8 YCbCr PLANAR + + + +

444 10 YCbCr PLANAR + + + +

There are three types of color transformations to convert RGB to YCbCr and vice

versa: BT601, BT709, BT2020. Also there are two modes: the first for digital television

and the second for video processing on PC. Modes are differed by output value range.

For digital television Y is in [16, 235], Cb/Cr is in [16, 240]. For PC (other name for these

modes is full range) Y, Cb, Cr are in [0, 255]. Range values are defined for 8-bit data.

Conversion formulas are also defined for 8-bit data.

Page 73 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� BT601

– RGB to YCbCr

Y = 0.2568 · R + 0.5041 ·G + 0.0979 · B + 16,

Cb = −0.1482 · R− 0.2910 ·G + 0.4392 · B + 128,

Cr = 0.4392 · R− 0.3678 ·G− 0.0714 · B + 128.

– YCbCr to RGB

R = 1.1644 · (Y − 16) + 1.5960 · (Cr− 128),

G = 1.1644 · (Y − 16)− 0.8130 · (Cr− 128)–0.3918 · (Cb− 128),

B = 1.1644 · (Y − 16) + 2.0172 · (Cb–128).

� BT601 (full range, FR)

– RGB to YCbCr

Y = 0.2990 · R + 0.5870 ·G + 0.1140 · B + 16,

Cb = −0.1687 · R− 0.3313 ·G + 0.5 · B + 128,

Cr = 0.5 · R− 0.4187 ·G− 0.0813 · B + 128.

– YCbCr to RGB

R = 1.0 · Y + 1.4020 · (Cr− 128),

G = 1.0 · Y − 0.7141 · (Cr− 128)–0.3441 · (Cb− 128),

B = 1.0 · Y + 1.7720 · (Cb–128).

� BT709

Page 74 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

– RGB to YCbCr

Y = 0.1826 · R + 0.6142 ·G + 0.0620 · B + 16,

Cb = −0.1006 · R− 0.3386 ·G + 0.4392 · B + 128,

Cr = 0.4392 · R− 0.3989 ·G− 0.0403 · B + 128.

– YCbCr to RGB

R = 1.1644 · (Y − 16) + 1.7927 · (Cr− 128),

G = 1.1644 · (Y − 16)− 0.5329 · (Cr− 128)–0.2132 · (Cb− 128),

B = 1.1644 · (Y − 16) + 2.1124 · (Cb–128).

� BT2020

– RGB to YCbCr

Y = 0.2256 · R + 0.5823 ·G + 0.0509 · B + 16,

Cb = −0.1227 · R− 0.3166 ·G + 0.4392 · B + 128,

Cr = 0.4392 · R− 0.4039 ·G− 0.0353 · B + 128.

– YCbCr to RGB

R = 1.1644 · (Y − 16) + 1.6787 · (Cr− 128),

G = 1.1644 · (Y − 16)− 0.6504 · (Cr− 128)–0.1873f · (Cb− 128),

B = 1.1644 · (Y − 16) + 2.1418 · (Cb–128).

4.25 RAW import component

A camera raw image file contains minimally processed data from the image sensor

of either a digital camera, a motion picture film scanner, or other image scanner. Raw

image bitdepth is in range from 10 to 16 bits. Raw image could be packed. It is grayscale

image with one plane overlaid with a color filter array (for example Bayer filter).

Page 75 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

RAW Import component of FASTVIDEO SDK allows to feed pipeline with data

directly from a camera. There are two types of RAW Import component one import

data from host another from device memory. Device import component is designed for a

camera that supports GPU Direct technology.

RAW Import supports multiple RAW formats listed in fastRawFormat t. Currenly

RAW import supports two formats. There are FAST RAW XIMEA12, FAST RAW PTG12.

Formats FAST RAW XIMEA12, FAST RAW PTG12 are imported as FAST I12 surface.

In the future the number of supported formats will be increased by user demand.

Fig. 14. FAST RAW XIMEA12

Fig. 15. FAST RAW PTG12

Pixel pattern is repeated each 12 bytes for FAST RAW XIMEA12, FAST RAW PTG12.

So image width has to be aligned on 8 pixels bound and pitch has to be aligned on 12

bytes bound.

Page 76 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

4.26 Surface converter component

Component converts bit depth and surface type. There are four types of conversions:

bit depth, RGB channel select, RGB to grayscale by brightness, grayscale to grayscale

RGB, grayscale to RGB, and bayer to RGB.

Bit depth conversion changes bit depth of surface by left or right shift input pixels.

When source value has smaller bit depth than destination, then left shift is used. Inserted

bits are populated by zero. When source value has greater bit depth than destination,

right logical shift is used.

Acceptable conversions

FAST I8,10,12,14,16 → FAST I8,12,16,

FAST RGB8,12,16 → FAST RGB8,12,16.

Select channel filter allows to get any channel from RGB and save it as grayscale

image.

RGB to grayscale conversion takes all RGB channels with appropriate coefficient to

create grayscale image. Coefficients are user defined, so any type of RGB to grayscale can

be used.

Grayscale to grayscale RGB conversion creates RGB image with equal color channels.

Grayscale to RGB conversion creates RGB image by three times copy from source

buffer.

Bayer to RGB conversion creates RGB image colorize image according Bayer pattern.

4.27 Histogram component

An image histogram is a type of histogram that acts as a graphical representation

of the tonal distribution in a digital image. Histograms are widely used in image pro-

cessing and computer vision. Histogram component calculates three types of histograms:

common, bayer, parade. Enum fastHistogramType t contains all supported types.

Common types defines ordinary histogram, calculated for a whole image. Component

generates one histogram for grayscale image and three histograms for RGB image.

Number of bins is usually equal to a number of tone levels. But number of bins has

significant influence on performance. So use less bins as possible.

Bayer type histogram interprets grayscale image as Bayer filtered image with defined

pattern. Bayer pattern is additional input parameter. Component generates three his-

tograms for Bayer image, for each color in pattern, respectively. Also there is an option

when each green pixel in pattern has its own histogram (FAST HISTOGRAM BAYER G1G2).

Page 77 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Parade contains multiple histograms for each color. In general case, it gives three

color histograms for each image columns. Also there is an option to calculate parade with

predefined step to skip several columns.

Structure fastHistogramBayer t could be both static and dynamic parameter for

bayer type histogram. Structure fastHistogramParade t could be both static and dy-

namic parameter for parade histogram.

4.28 NPP component

NVIDIA Performance Primitive (NPP) is a large library which provides GPU-

accelerated image, video, and signal processing functions. With over 5000 primitives

for image and signal processing, you can easily perform multiple tasks.

In FASTVIDEO SDK exits some components, which are based on NPP functions.

Some components are wrapper for NPP functions, some components add additional func-

tionality.

There are four NPP-based SDK components: NppFilter, NppGeometry, NppResize,

NppRotate.

NppFilter component currently supports gaussian sharpen and unsharp mask filters.

Gaussian sharpen filter based on gaussian blur kernel. It is applied to all RGB channels

separately. Filter gaussian sharpen is a wrapper for nppiFilterGaussAdvancedBorder*.

Unsharp mask is a smart sharpening filter. It’s also based on gaussian blur but it

is applied only to Y channel of YCbCr image. Chrominance channels are not changed.

Also it has additional parameters: threshold, amount, envelope. Threshold controls the

minimum brightness change that will be sharpened or how far apart adjacent tonal values

have to be before the filter does anything. Amount is how much contrast is added at the

edges. Envelope function allows to make Amount parameter depend on pixel brightness.

Amount has maximum value in the center of pixel brightness range. And minimum value

on the border of range. This is to reduce over saturation for bright and dark areas.

Envelope function is defined like that:

envelope = exp

coef×
(

value−median

sigma

)rank


where

� value – pixel brightness in range [0; 1],

� median – median value in range [0; 1],

Page 78 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� sigma - variance value in range [0; 1],

� rank has to be even,

� coef is negative value.

NppGeometry component currently supports image remap operation. Remap oper-

ation is a wrapper for nppiRemap* functions.

NppResize component resize image with selected interpolation mode. This compo-

nent is a wrapper for nppiRotate* functions.

NppRotate component rotates an image around the origin (0, 0) and then shifts it.

This component is a wrapper for nppiRotate* functions.

4.29 Auxiliary functions

Auxiliary functions give access to internal pipeline information to help user to identify

and solve some software issues.

Function fastGetDeviceSurfaceBufferInfo extracts information from device sur-

face buffer about surface format, maximal image width, height and pitch, current image

width, height and pitch. This information allows to control surface and image size, which

could be changed in the pipeline. Surface format and maximum image size in device sur-

face buffer are initialized after component creation. Image size and pitch are initialized

after call of transform function.

If create function of component returns FAST UNSUPPORTED SURFACE then one should

call fastGetDeviceSurfaceBufferInfo and check whether the component supports cur-

rent surface format.

If transform function of component returns FAST INVALID SIZE this means that im-

age size is lager than maxWidth and maxHeight, which were assigned to component on

creation. User has to call fastGetDeviceSurfaceBufferInfo and check image size.

Most functions from FASTVIDEO SDK are asynchronous. Only functions that copy

from device memory to host are synchronous. Such a behavior is the result of asynchronous

nature of CUDA kernel call. Asynchronous call allows to increase performance but results

in problem with error handling. Failed function can return not own error but error that

was raised in any function before. So it is impossible to determine what function is

crashed.

Global option Interface Synchronization adds to the end of all interfaces method

cudaDeviceSyncronize call. This localizes problem in one interface method. Error can

not pass bound between calls. Function fastEnableInterfaceSynchronization enables

Page 79 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

and disables Interface Synchronization. By default InterfaceSynchronization is disabled.

If InterfaceSynchronization is enabled, performance is degraded greatly. So use this option

only for debug purposes.

4.30 Trace functions

SDK Trace stores to file all parameters of all called FASTVIDEO SDK functions and

their returned statuses. All public fields of device surface buffer are serialized in the trace

module as well.

Trace helps user to check all parameters and to find errors during creation or trans-

form phases. FASTVIDEO support team can request trace file to reproduce a problem.

Trace file is an ordinary text file so user can verify that there is no private information in

its content.

To enable trace function fastTraceCreate has to be called with trace file name/path.

Function fastTraceClose flushes buffers and closes trace file. Name of trace file is a global

option.

Some of failures are raised by structural exception like segmentation fault or stack

destroying or other and cannot be catch by C++ try catch. In this case user cannot

call fastTraceClose to close trace file correctly and will loose some trace information.

To avoid loosing trace information user has to enable trace flush global option. If trace

flush is enabled, every trace write will be stored to file. Function fastTraceEnableFlush

enables and disables trace flush option.

4.31 Sample Applications

There are the following sample applications in SDK:

� BayerCompressionSample,

� CameraMultiSample,

� CameraSample,

� ComponentsSample,

� DebayerJpegSample,

� DebayerSample,

� DenoiseSample,

� FfmpegSample,

� HistogramSamplem,

Page 80 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� ImageConverterSample,

� J2kDecoderSample,

� J2kEncoderSample,

� JpegAsyncSample,

� JpegSample,

� MuxSample,

� NppSample,

� PhotoHostingSample,

� RawImportSample,

� ResizeSample,

� SDIConverterSample.

All sample applications can process single file or folder. In the case of folder, multiple

files are processed in a loop.

Every console application has help shown by empty command line or -help parameter.

There is .cmd file for each application demonstrated the whole application functionality.

These files are located in the ./bin/ directory.

The BayerCompressionSample demonstrates how to split, compress, decompress and

merge Raw Bayer data for camera application.

The CameraMultiSample demonstrates pipeline processed image from two cameras.

Adjustable parameters are individual for each camera. Processed images have been stored

to the two separate motion JPEG files.

The CameraSample demonstrates how to implement full image processing pipeline for

data from a camera, including visualizing via OpenGL. The application also demonstrates

pixel correction operation and LUT transform, etc. CameraSample is the only demo

project that need CUDA SDK to be installed.

The ComponentsSample demonstrates various components of SDK that does not

included in other samples. For more information see sample help.

The DebayerSample demonstrates how to work with API of Debayer component.

Class Debayer (Debayer.h, Debayer.cpp) encapsulates API calls for Debayer.

The DebayerJpegSample demonstrates how to integrate Debayer with JPEG En-

coder.

The DenoiseSample demonstrates Denoiser component.

The FfmpegSample demonstrates image compression to Motion JPEG and decom-

pression from Motion JPEG.

The HistogramSample demonstrates Histogram component.

Page 81 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

The ImageConverterSample converts 8 bits PGM/PPM to 12/16 bits PGM/PPM

and vice versa. Also the ImageConverterSample converts 12/16 bits PGM to supported

RAW and vice versa.

The J2KDecoderSample demonstrates JPEG2000 decoder functionality.

The J2kEncoderSample demonstrates JPEG2000 encoder functionality.

The JpegAsyncSample demonstrates JPEG encoder functionality in asynchronous

mode.

JpegSample demonstrates how to work with API of JPEG Encoder/Decoder compo-

nents of SDK. Classes Encoder (Encoder.h, Encoder.cpp) and Decoder (Decoder.h,

Decoder.cpp) encapsulate API calls for JPEG Encoder and JPEG Decoder respectively.

In addition, application demonstrates pixel correction operation and LUT transform for

JPEG Encoder.

The MuxSample demonstrates Multiplexer componets.

The NppSample demonstrates NPP components of SDK.

The PhotoHostingSample demonstrates how to integrate in one pipeline the follow-

ing five components: JPEG Decoder, Crop, Resizer, Image Filter, JPEG Encoder.

The RawImportSample demonstrates file import in RAW format (XIMEA and PTG

versions).

The SDIConverterSample demonstrates how to import SDI image into pipeline and

how to export SDI image from pipeline to host memory.

Next table links components and samples. The first column is component or sub-

component name. The second column is sample project name. The third column is name

of file in a sample project. File contains minimum pipeline to component demonstration.

There are two files with .h and .cpp extension with the same name.

Table 9. List of sample applications for components

Component Sample File

Affine Transformation (4.18,

5.15)

ComponentsSample Affine

Bayer Merger (4.23, 5.21) BayerCompressionSample DecoderMerger

Bayer Splitter (4.23, 5.20) BayerCompressionSample SplitterEncoder

Page 82 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Table 9. List of sample applications for components

Component Sample File

BGRX import (*, *) ComponentsSample BGRXImport

Crop Component (4.19, 5.16) ComponentsSample Crop

Debayer (4.10, 5.7). Include

multi-thread

DebayerSample Debayer

JPEG2000 Decoder in batch

mode and multi-thread (4.15,

5.14)

J2KDecoderSample J2kDecoderBatch

JPEG2000 Decoder in single

mode (4.15, 5.14)

J2KDecoderSample J2kDecoderOneImage

JPEG2000 Encoder in batch

mode and multi-thread (4.15,

5.13)

J2KEncoderSample J2kEncoderBatch

JPEG2000 Encoder in single

mode (4.15, 5.13)

J2KEncoderSample J2kEncoderOneImage

JPEG Encoder (8/12-bits) (4.13,

5.12, 5.9). Include multi-thread

JpegSample Encoder

JPEG Encoder. Asynchronous

version (4.13, 5.12, 5.9)

JpegAsyncSample EncoderAsync

JPEG Decoder (4.13, 5.12, 5.10).

Include multi-thread

JpegSample Decoder

JPEG Decoder for 12-bits images

(4.14, 5.12, 5.11)

JpegSample DecoderCpu

Page 83 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Table 9. List of sample applications for components

Component Sample File

HDR Builder (4.21, 5.19) HdrSample HdrBuilder

Histogram: common, bayer, pa-

rade (4.27, 5.27)

HistogramSample Histogram

Image Filters. Bad Pixel Correc-

tion (*, 5.17)

ComponentsSample BadPixelCorrection

Image Filters. Base Color Correc-

tion (4.20.1, 5.17)

ComponentsSample BaseColorCorrection

Image Filters. Bayer Black Shift

(4.20.2, 5.17)

ComponentsSample BayerBlackShift

Image Filters. Binning filter

(4.20.3, 5.17)

ComponentsSample Binning

Image Filters. Flat-field correc-

tion (4.20.4, 5.17)

ComponentsSample Ffc

Image Filters. Defringe (*, *) ComponentsSample Defringe

Image Filters. LUT. HSV 3D

(4.20.9, 5.17)

ComponentsSample HSVLut3D

Image Filters. LUT. RGB 3D

(4.20.8, 5.17)

ComponentsSample RGBLut3D

Image Filters. LUT (LUT 12 *,

LUT 16 *) (4.20.7, 5.17)

ComponentsSample Lut16

Page 84 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Table 9. List of sample applications for components

Component Sample File

Image Filters. LUT (LUT 8 8)

(4.20.7, 5.17)

ComponentsSample Lut8

Image Filters. LUT (LUT 8 8 C)

(4.20.7, 5.17)

ComponentsSample Lut8C

Image Filters. LUT

(LUT * 16 BAYER) (4.20.7,

5.17)

ComponentsSample LutBayer

Image Filters. Median (4.20.10,

5.17)

ComponentsSample Median

Image Filters. SAM (4.20.11,

4.20.7, 5.17)

ComponentsSample Sam

Image Filters. Tone Curve

(4.20.12, 5.17)

ComponentsSample ToneCurve16

MJPEG Decoder (4.17, 4.13,

5.10)

FfmpegSample FfmpegDecoder

MJPEG Encoder (4.17, 4.13, 5.9) FfmpegSample FfmpegEncoder

MJPEG Encoder. Asynchronous

(4.17, 4.13, 5.9)

FfmpegSample FfmpegEncoderAsync

Mux (*, 5.23) MuxSample DebayerMux

NPP Filter. Gaussian Filter

(4.28, 5.28)

NppSample Gauss

Page 85 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Table 9. List of sample applications for components

Component Sample File

NPP Filter. Unsharp Mask (4.28,

5.28)

NppSample UnsharpMask

NPP Geometry. Perspective

(4.28, 5.29)

NppSample Perspective

NPP Geometry. Remap (4.28,

5.29)

NppSample Remap

NPP Geometry. Remap by chan-

nel (4.28, 5.29)

NppSample Remap3

NPP Resize (4.28, 5.30) NppSample Resize2

NPP Rotate (4.28, 5.31) NppSample Rotate

Raw Import (XIMEA12, PTG12,

from device) (*, *)

RawImportSample RawImportFromDevice

Raw Import (XIMEA12, PTG12,

from host) (*, *)

RawImportSample RawImportFromHost

Resize (4.22, 5.18) ResizeSample Resize

SDI Export (to device buffer)

(4.24, 5.24)

SDIConverterSample SDIExportToDevice

SDI Export with custom YUV (to

host buffer) (4.24, 5.24)

SDIConverterSample SDIExportToHost

SDI Import with custom YUV

(from device buffer) (4.24, 5.24)

SDIConverterSample SDIImportFromDevice

Page 86 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Table 9. List of sample applications for components

Component Sample File

SDI Import with custom YUV

(from host buffer) (4.24, 5.24)

SDIConverterSample SDIImportFromHost

Spatial Denoiser (*, 5.8) DenoiseSample Denoise

Surface Convertion. Bit Depth

(4.26, 5.26)

ComponentsSample BitDepthConverter

Surface Convertion. Select Chan-

nel From RGB (4.26, 5.26)

ComponentsSample SelectChannel

Surface Convertion. Gray To

RGB (4.26, 5.26)

ComponentsSample GrayToRgb

Surface Convertion. RGB To

Gray (4.26, 5.26)

ComponentsSample RgbToGray

4.32 How to create your own applications with that

SDK

It’s a good idea to start from doing some tests with command-line sample appli-

cations, which come with FASTVIDEO SDK. This is important to be sure that you

understand all parameters, have right input image and final image is fine in terms of

quality.

Then one could start from source code analysis of our sample applications to build

your own software. At this point one can work with images on HDD/SSD to reproduce

working solution with good image quality.

Next step is an attempt to work with your data which reside in a system memory

or GPU memory. You can copy data from HDD/SSD to system memory and check the

performance.

In the case if you have packed data from a camera, we suggest to switch to 8-bit

Page 87 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

camera mode to exclude packing, at least at the beginning. At this stage you need to

create your software which is working with camera data in system memory. Unpacking

could be added later, as soon as your application is working.

4.33 Demo Applications

Apart from sample applications in the FASTVIDEO SDK, you can get ready-to-use

demo applications from the following site https://www.fastcompression.com at download

section. You can find there the following software for Windows:

� CUDA Debayer – command-line application for debayering (all bayer patterns,

8/12/16-bit data, demosaicing algorithms HQLI, DFPD, MG;

� CUDA JPEG Codec – command-line application for JPEG compression and decom-

pression;

� CUDA J2K Codec – command-line application for J2K encoding and decoding;

� CUDA Resize – command-line application for resize.

Fast CinemaDNG Processor (for Windows and Linux) – GUI application for realtime

processing of CinemaDNG image series and MLV video on GPU.

You can get more info at https://www.fastcinemadng.com

Page 88 from 251 © Fastvideo, 2011-2022

https://www.fastcinemadng.com


Fastvideo Image & Video Processing SDK Technical manual

5 Fastvideo SDK API

5.1 Statuses

All SDK functions return result status of fastStatus t type.

� FAST OK – There is no error during function execution.

� FAST TRIAL PERIOD EXPIRED – Trial period expired for demo version of SDK.

All functions are shut down.

� FAST INVALID DEVICE – Device with selected index does not exist or device is

non NVIDIA device or device is non CUDA-compatible device.

� FAST INCOMPATIBLE DEVICE – Device is CUDA-compatible, but its compute

compatibility is below 3.0, thus device is considered to be incompatible with SDK.

� FAST INSUFFICIENT DEVICE MEMORY – Available device memory is not

enough to allocate new buffer.

� FAST INSUFFICIENT HOST MEMORY – Available host memory is not enough

to allocate new buffer.

� FAST INVALID HANDLE – Component handle is invalid or has inappropriate

type.

� FAST INVALID VALUE – Some parameter of the function called is invalid or com-

bination of input parameters are unacceptable.

� FAST UNAPPLICABLE OPERATION – This operation can not be applied to the

current type of data.

� FAST INVALID SIZE – Image dimension is invalid.

� FAST UNALIGNED DATA – Buffer base pointers or pitch are not properly aligned.

� FAST INVALID TABLE – Invalid quantization / Huffman table.

� FAST BITSTREAM CORRUPT – JPEG bitstream is corrupted and can not be

decoded.

� FAST EXECUTION FAILURE – Device kernel execution failure.

� FAST INTERNAL ERROR – Internal error, non-kernel software execution failure.

� FAST UNSUPPORTED SURFACE – Current component does not support this

type of surface. Check documentation.

� FAST IO ERROR – Failed to read/write file.

� FAST INVALID FORMAT – Invalid file format.

� FAST UNSUPPORTED FORMAT – File format is not supported by the current

Page 89 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

version of SDK.

� FAST END OF STREAM – Error related motion JPEG decoding. Unexpected end

of stream.

� FAST MJPEG THREAD ERROR – Error related motion JPEG encoding/decoding.

General error in worker thread.

� FAST TIMEOUT – Error related motion JPEG encoding/decoding or other video

coding. Timeout in worker thread.

� FAST MJPEG OPEN FILE ERROR – Error related motion

JPEG encoding/decoding. Could not open file.

� FAST UNKNOWN ERROR – Unrecognized error.

5.2 Master SDK and secondary library initialization

5.2.1 fastInit

fastStatus t fastInit (

unsigned affinity,

bool openGlMode)

Sets GPU device to work with.

Parameters:

affinity[in] – affinity mask. “1” in less significant bit of affinity mask denotes to

use GPU with device Id = 1. “1” in next bit denotes to use GPU

with device Id = 2 and so on.

openGlMode[in] – if openGlMode set to be true, then FASTVIDEO SDK is initialized

to work with OpenGL application. In other case FASTVIDEO SDK

is initialized to work with ordinary CUDA application.

Notes:

If device is not found or device is not NVIDIA device or device does not support

CUDA, function will return status FAST INVALID DEVICE.

If device has compute compatibility below 3.0, function will return status

FAST INCOMPATIBLE DEVICE.

Statuses:

Page 90 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST OK,

� FAST INVALID DEVICE,

� FAST INTERNAL ERROR,

� FAST INCOMPATIBLE DEVICE.

5.2.2 fastGetSdkParametersHandle

fastStatus t fastGetSdkParametersHandle (

fastSdkParametersHandle t *handle)

Gets handle of SDK global options.

Parameters:

handle[out] – pointer to global options handle.

Statuses:

� FAST OK.

5.2.3 fastLibraryInit

fastStatus t fast*LibraryInit (

fastSdkParametersHandle t handle)

Inits secondary library of component by SDK global options.

Parameters:

handle[in] – global options handle.

Statuses:

� FAST OK.

5.3 Trace and Auxiliary functions

5.3.1 fastGetDeviceSurfaceBufferInfo

fastStatus t fastGetDeviceSurfaceBufferInfo (

fastDeviceSurfaceBufferHandle t buffer,

fastDeviceSurfaceBufferInfo t *devBuffer)

Page 91 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Gets public information from device surface buffer.

Parameters:

buffer[in] – handle of device surface buffer;

devBuffer[out] – pointer to structure with public information.

Notes:

Structure fastDeviceSurfaceBufferInfo t contains the following fields:

� surfaceFmt – type of surface. Value is fastSurfaceFormat t enum integer values.

Values 13 and 14 are internal representations of FAST RGB12 and FAST RGB16

formats respectively. Value is defined after component creation.

� maxWidth – maximum width of processed image. Value is defined after component

creation.

� maxHeight – maximum height of processed image. Value is defined after component

creation.

� maxPitch – pitch for maximal image. Value is defined after component creation.

� width – width of currently processed image. Value is defined after call of transform

function.

� height – height of currently processed image. Value is defined after call of transform

function.

� pitch – pitch of currently processed image. Value is defined after call of transform

function.

Statuses:

� FAST OK.

5.3.2 fastEnableInterfaceSynchronization

fastStatus t fastEnableInterfaceSynchronization (

bool isEnabled)

Sets value of interface synchronization in global option.

Parameters:

isEnabled[in] – option value.

Page 92 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Notes:

Global option Interface Synchronization adds to the end of all interfaces method

cudaDeviceSyncronize call. This localizes problem in one interface method. Asynchronous

error can not pass bound between calls.

Statuses:

� FAST OK.

5.3.3 fastTraceCreate

fastStatus t fastTraceCreate (

const char *fileName)

Opens trace file.

Parameters:

fileName[in] – file path or file name for trace file.

Notes:

If file cannot be opened or created function returns FAST IO ERROR.

Statuses:

� FAST OK,

� FAST IO ERROR.

5.3.4 fastTraceClose

fastStatus t fastTraceClose()

Closes current trace file.

Statuses:

� FAST OK.

5.3.5 fastTraceEnableFlush

fastStatus t fastTraceEnableFlush (bool enableFlush)

Page 93 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Sets value of trace flush in global option.

Parameters:

enableFlush[in] – option value.

Notes:

If trace flush is enabled, every trace write will be stored to file immediately.

Statuses:

� FAST OK.

5.4 Memory management functions

5.4.1 fastMalloc

fastStatus t fastMalloc (

void **buffer,

size t size)

Allocates page-locked memory on CPU.

Parameters:

buffer[out] – pointer to allocated memory;

size[in] – size of allocated memory in Bytes.

Notes:

Page-locked memory cannot be moved from RAM to swap file. It increases PCI-

Express I/O speed of GPU over conventional memory.

If system can not allocate page-locked memory, then function will return status

FAST INSUFFICIENT HOST MEMORY.

Statuses:

� FAST OK,

� FAST INSUFFICIENT HOST MEMORY.

5.4.2 fastFree

fastStatus t fastFree (void *buffer)

Page 94 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Frees page-locked memory.

Parameters:

buffer[in] – pointer to allocated memory.

Statuses:

� FAST OK,

� FAST INTERNAL ERROR.

5.4.3 fastGetDevices

fastStatus t fastGetDevices (

fastDeviceProperty **devices,

int *count)

5.5 Pipeline import functions

5.5.1 fastImportFromHostCreate

fastStatus t fastImportFromHostCreate (

fastImportFromHostHandle t *handle,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates ImportFromHostAdapter and returns associated handle.

Parameters:

handle[out] – pointer to created ImportFromHostAdapter handle;

surfaceFmt[in] – defines input pixel format;

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Notes:

Page 95 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Function fastImportFromHostCreate allocates all necessary buffers in GPU mem-

ory. In case GPU does not have enough free memory, fastImportFromHostCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY.

5.5.2 fastImportFromHostGetAllocatedGpuMemorySize

fastStatus t fastImportFromHostGetAllocatedGpuMemorySize (

fastImportFromHostHandle t handle,

unsigned *allocatedGpuSizeInBytes)

Returns requested GPU memory for ImportFromHostAdapter.

Parameters:

handle[in] – ImportFromHostAdapter handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for ImportFromHostAdapter.

Statuses:

� FAST OK.

5.5.3 fastImportFromHostCopy

fastStatus t fastImportFromHostCopy (

fastImportFromHostHandle t handle,

void* h src,

unsigned width,

unsigned pitch,

unsigned height)

Copies image from CPU buffer to pipeline.

Parameters:

Page 96 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – ImportFromHostAdapter handle;

h src[in] – pointer on CPU buffer with image data;

width[in] – image width in pixels;

pitch[in] – size of image row in Bytes;

height[in] – image height in pixels.

Notes:

Buffer h src has to be allocated with fastMalloc. Buffer allocated by original malloc

also can be used, but copy speed will degrade.

If image size is greater than maximum value on creation, then error status

FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.5.4 fastImportFromHostDestroy

fastStatus t fastImportFromHostDestroy (

fastImportFromHostHandle t handle)

Destroys ImportFromHostAdapter.

Parameters:

handle[in] – ImportFromHostAdapter handle.

Statuses:

� FAST OK.

5.5.5 fastImportFromDeviceCreate

fastStatus t fastImportFromDeviceCreate (

fastImportFromDeviceHandle t *handle,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

Page 97 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates ImportFromDeviceAdapter and returns associated handle.

Parameters:

handle[out] – pointer to created ImportFromDeviceAdapter handle;

surfaceFmt[in] – defines input pixel format;

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Notes:

Function fastImportFromDeviceCreate allocates all necessary buffers in GPU memory.

In case GPU does not have enough free memory, then fastImportFromDeviceCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY.

5.5.6 fastImportFromDeviceGetAllocatedGpuMemorySize

fastStatus t fastImportFromDeviceGetAllocatedGpuMemorySize (

fastImportFromDeviceHandle t handle,

unsigned *allocatedGpuSizeInBytes)

Returns requested GPU memory for ImportFromDeviceAdapter.

Parameters:

handle[in] – ImportFromDeviceAdapter handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for ImportFromDeviceAdapter.

Statuses:

Page 98 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST OK.

5.5.7 fastImportFromDeviceCopy

fastStatus t fastImportFromDeviceCopy (

fastImportFromDeviceHandle t handle,

void* d src,

unsigned width,

unsigned pitch,

unsigned height)

Copies image from GPU buffer to pipeline.

Parameters:

handle[in] – Import From Device Adapter handle;

d src[in] – pointer on Device buffer with image;

width[in] – image width in pixels;

pitch[in] – size of image row in Bytes;

height[in] – image height in pixels.

Notes:

Buffer d src has to be allocated in Device memory by cudaMalloc.

If image size is greater than maximum value on creation, then error status

FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.5.8 fastImportFromDeviceDestroy

fastStatus t fastImportFromDeviceDestroy (fastImportFromDeviceHandle t han-

dle)

Destroys ImportFromDeviceAdapter.

Parameters:

Page 99 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – ImportFromDeviceAdapter handle.

Statuses:

� FAST OK.

5.6 Pipeline export functions

5.6.1 fastExportToHostCreate

fastStatus t fastExportToHostCreate (

fastExportToHostHandle t *handle,

fastSurfaceFormat t *surfaceFmt,

fastDeviceSurfaceBufferHandle t srcBuffer)

Creates ExportToHostAdapter and returns associated handle.

Parameters:

handle[out] – pointer to created ExportToHostAdapter handle;

surfaceFmt[out] – pipeline output surface format;

srcBuffer[in] – linked buffer from previous component.

Statuses:

� FAST OK.

5.6.2 fastExportToHostGetAllocatedGpuMemorySize

fastStatus t fastExportToHostGetAllocatedGpuMemorySize (

fastExportToHostHandle t handle,

unsigned *requestedGpuSizeInBytes)

Gets ExportToHostAdapter GPU memory usage.

Parameters:

handle[in] – ExportToHostAdapter handle;

requestedGpuSizeInBytes[out] – memory usage in Bytes.

Statuses:

Page 100 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST OK.

5.6.3 fastExportToHostChangeSrcBuffer

fastStatus t fastExportToHostChangeSrcBuffer (

fastExportToHostHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – ExportToHostAdapter handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.6.4 fastExportToHostCopy

fastStatus t fastExportToHostCopy (

fastExportToHostHandle t handle,

void* h dst,

unsigned width,

unsigned pitch,

unsigned height,

fastExportParameters t *parameters)

Copies image from pipeline to CPU buffer.

Parameters:

Page 101 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – ExportToHostAdapter handle;

h dst[in] – pointer on Host buffer for image;

width[in] – image width in pixels;

pitch[in] – size of image row in Bytes;

height[in] – image height in pixels;

parameters[in] – export parameters.

Notes:

Buffer h dst has to be allocated with fastMalloc. Buffer, which is allocated by original

malloc also can be used, but copy speed will degrade. If size of h dst is not enough, then

the function will fail with segmentation fault.

Export Parameters allows to convert RGB color format to BGR color format. In

other case parameters have to be null. To convert color format to BGR convert member

of fastExportParameters t have to set in FAST CONVERT BGR.

Statuses:

� FAST OK.

5.6.5 fastExportToHostDestroy

fastStatus t fastExportToHostDestroy (fastExportToHostHandle t handle)

Destroys ExportToHostAdapter.

Parameters:

handle[in] – ExportToHostAdapter handle.

Statuses:

� FAST OK.

5.6.6 fastExportToDeviceCreate

fastStatus t fastExportToDeviceCreate (

fastExportToDeviceHandle t *handle,

fastSurfaceFormat t *surfaceFmt,

fastDeviceSurfaceBufferHandle t srcBuffer)

Page 102 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Creates ExportToDeviceAdapter and returns associated handle.

Parameters:

handle[out] – pointer to created ExportToDeviceAdapter handle;

surfaceFmt[out] – pipeline output surface format;

srcBuffer[in] – linked buffer from previous component.

Statuses:

� FAST OK.

5.6.7 fastExportToDeviceCopy

fastStatus t fastExportToDeviceCopy (

fastExportToDeviceHandle t handle,

void* d dst,

unsigned width,

unsigned pitch,

unsigned height,

fastExportParameters t *parameters)

Copies image from pipeline to GPU buffer.

Parameters:

handle[in] – ExportToDeviceAdapter handle;

d dst[in] – pointer on Device buffer for image;

width[in] – image width in pixels;

pitch[in] – size of image row in Bytes;

height[in] – image height in pixels;

parameters[in] – export parameters.

Notes:

Buffer d dst has to be allocated in Device memory by cudaMalloc. If size of d dst is

not enough, then function will fail with segmentation fault.

Export Parameters allows to convert RGB color format to BGR color format. In

other case parameters have to be null. To convert color format to BGR convert member

of fastExportParameters t have to set in FAST CONVERT BGR.

Page 103 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Statuses:

� FAST OK.

5.6.8 fastExportToDeviceGetAllocatedGpuMemorySize

fastStatus t fastExportToDeviceGetAllocatedGpuMemorySize (

fastExportToDeviceHandle t handle,

unsigned *requestedGpuSizeInBytes)

Gets ExportToDeviceAdapter GPU memory usage.

Parameters:

handle[in] – ExportToDeviceAdapter handle;

requestedGpuSizeInBytes[out] – memory usage in Bytes.

Statuses:

� FAST OK.

5.6.9 fastExportToDeviceChangeSrcBuffer

fastStatus t fastExportToDeviceChangeSrcBuffer (

fastExportToDeviceHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – ExportToHostAdapter handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

Page 104 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.6.10 fastExportToDeviceDestroy

fastStatus t fastExportToDeviceDestroy (fastExportToDeviceHandle t handle)

Destroys ExportToDeviceAdapter.

Parameters:

handle[in] – ExportToDeviceAdapter handle.

Statuses:

� FAST OK.

5.7 Debayer functions

5.7.1 fastDebayerCreate

fastStatus t fastDebayerCreate (

fastDebayerHandle t *handle,

fastDebayerType t debayerType,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle �srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates Debayer and returns associated handle.

Parameters:

handle[out] – pointer to created Debayer handle;

debayerType[in] – debayer algorithm (HQLI, L7, DFPD, MG, BINNING {2x2, 4x4,

8x8});

maxHeight[in] – maximum image height in pixels;

maxWidth[in] – maximum image width in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Page 105 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Notes:

Function fastCreateDebayerHandle allocates all necessary buffers in GPU memory. In

case GPU does not have enough free memory, then fastCreateDebayerHandle will return

FAST INSUFFICIENT DEVICE MEMORY.

Maximum dimensions of the image are set to Debayer during creation. Thus if trans-

formation result exceeds the maximum value, then error status FAST INVALID SIZE will

be returned.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED SURFACE.

5.7.2 fastDebayerGetAllocatedGpuMemorySize

fastStatus t fastDebayerGetAllocatedGpuMemorySize (

fastDebayerHandle t handle,

unsigned * requestedGpuSizeInBytes)

Returns requested GPU memory for Debayer.

Parameters:

handle[in] – Debayer handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for Debayer.

Statuses:

� FAST OK.

Page 106 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.7.3 fastDebayerChangeSrcBuffer

fastStatus t fastDebayerChangeSrcBuffer (

fastDebayerHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer

Parameters:

handle[in] – Debayer handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.7.4 fastDebayerTransform

fastStatus t fastDebayerTransform (

fastDebayerHandle t handle,

fastBayerPattern t bayerFmt,

unsigned width,

unsigned height)

Restores image colors.

Parameters:

handle[in] – Debayer handle;

bayerFmt[in] – bayer pattern;

height[in] – image height in pixels;

width[in] – image width in pixels.

Notes:

Page 107 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

The procedure takes Bayer image from input linked buffer, restores colors based on

pattern and algorithm and then stores color image to output linked buffer.

If image size is greater than maximum value on creation, then error status

FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.7.5 fastDebayerDestroy

fastStatus t fastDebayerDestroy (debayerHandle t handle)

Destroys Debayer handle.

Parameters:

handle[in] – Debayer handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.8 Denoise functions

5.8.1 fastDenoiseCreate

fastStatus t fastDenoiseCreate (

fastDenoiseHandle t *handle,

Page 108 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastSurfaceFormat t surfaceFmt,

void *staticDenoiseParameters,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates Denoise and returns associated handle.

Parameters:

handle[out] – pointer to created Denoise handle;

surfaceFmt[in] – image surface format;

staticDenoiseParameters[in] – static parameters for Denoise;

maxHeight[in] – maximum image height in pixels;

maxWidth[in] – maximum image width in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output

buffer of current component).

Notes:

Function fastCreateDenoiseHandle allocates all necessary buffers in GPU memory. In

case GPU does not have enough free memory, then fastCreateDenoiseHandle will return

FAST INSUFFICIENT DEVICE MEMORY.

Maximum dimensions of the image are set to Denoise during creation. Thus if trans-

formation result exceeds the maximum value, then error status FAST INVALID SIZE will

be returned.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Structure denoise static parameters t contains static parameters for Denoise:

typedef struct {
fastDenoiseThresholdFunctionType t function;

fastWaveletType t wavelet;

} denoise static parameters t

where

Page 109 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� function – type of threshold function. All threshold functions are enumerated in

fastDenoiseThresholdFunctionType t;

� wavelet – type of used wavelet. All wavelets are enumerated in fastWaveletType t.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED SURFACE.

5.8.2 fastDenoiseGetAllocatedGpuMemorySize

fastStatus t fastDenoiseGetAllocatedGpuMemorySize (

fastDenoiseHandle t handle,

unsigned *allocatedGpuSizeInBytes)

Returns requested GPU memory for Denoise.

Parameters:

handle[in] – Denoise handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for Denoise.

Statuses:

� FAST OK.

5.8.3 fastDenoiseChangeSrcBuffer

fastStatus t fastDenoiseChangeSrcBuffer (

fastDenoiseHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Page 110 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Parameters:

handle[in] – Denoise handle;

srcBuffer[in] – new source buffer

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.8.4 fastDenoiseTransform

fastStatus t fastDenoiseTransform (

fastDenoiseHandle t handle,

void *denoiseParameters,

unsigned width,

unsigned height)

Denoises image.

Parameters:

handle[in] – Denoise handle;

denoiseParameters[in] – dynamic parameters for Denoise;

height[in] – image height in pixels;

width[in] – image width in pixels.

Notes:

The procedure takes the image from input linked buffer, filters the image based on

dynamic parameters and then stores the image to output linked buffer.

If image size is greater than maximum value on creation, then error status

FAST INVALID SIZE will be returned.

Structure denoise parameters t contains dynamic parameters for Denoise.

typedef struct {

Page 111 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

int dwt levels;

float enhance[3];

float threshold[3];

float threshold per level[33];

} denoise parameters t

where

� dwt levels – number of DWT transforms (maximum is 11);

� enhance[3] – gains for each channel of YCbCr. Applied after threshold function to

wavelet coefficient.

� threshold[3] – basic thresholds for Y, Cb and Cr channels respectively;

� threshold per level[33] – individual relative thresholds for each wavelet band. The

first three values in the array correspond to values of Y, Cb and Cr of the first band.

Resulting threshold for each wavelet band of channel is multiplication of threshold

by respective threshold per level.

Resulting threshold is applied to wavelet coefficient through threshold function multipliers

for threshold per level for Y, Cb and Cr. Total threshold is equal to the result of

threshold per level× threshold

for each band and each color channel.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.8.5 fastDenoiseTransformBayerPlanes

fastStatus t fastDenoiseTransformBayerPlanes (

fastDenoiseHandle t handle,

void *denoiseParameters,

Page 112 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

unsigned width,

unsigned height)

Denoises separated planes of Bayer filtered image.

Parameters:

handle[in] – Denoise handle;

denoiseParameters[in] – dynamic parameters for Denoise;

height[in] – image height in pixels;

width[in] – image width in pixels.

Notes:

The procedure process separated planes of Bayer filtered image prepared by Bayer

Splitter component. It filters each planes separately. Resulted planes have to be merged

to the one image by Bayer Merger component. Calling the function on normal gray scale

image will cause image destruction. So the only way of using denoise component with the

function is as part of pipeline where preceding component is Bayer Splitter and following

component is Bayer Merger component.

Dynamic parameters and generated error

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.8.6 fastDenoiseDestroy

fastStatus t fastDenoiseDestroy (fastDenoiseHandle t handle)

Destroys Denoise handle.

Parameters:

Page 113 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – Denoise handle.

Notes:

Procedure frees component’s device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.9 JPEG Encoder functions

5.9.1 fastJpegEncoderCreate

fastStatus t fastJpegEncoderCreate (

fastJpegEncoderHandle t *handle,

unsigned maxHeight,

unsigne maxWidth,

fastDeviceSurfaceBufferHandle t srcBuffer)

Creates JPEG 8 or 12 bits Encoder and returns associated handle.

Parameters:

handle[out] – pointer to created JPEG Encoder handle;

maxHeight[in] – maximum image height in pixels;

maxWidth[in] – maximum image width in pixels;

srcBuffer[in] – linked buffer from previous component.

Notes:

It is important to note that there is no additional parameters to enable 12-bit encoder.

The same encoder component and interface functions are used for both 8 and 12 bit

encoder. Encoder type is selected automatically by bit depth of input surface.

Function fastJpegEncoderCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastJpegEncoderCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

Maximum dimensions of the image are set to Encoder during creation. Thus if

Page 114 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

encoded image exceeds the maximum value, then error status FAST INVALID SIZE will

be returned.

Gray image (FAST I8) can be encoded by color encoder (FAST RGB8). In this

case Encoder converts gray image to color image by duplicating gray channel to all color

channels.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED SURFACE.

5.9.2 fastJpegEncoderGetAllocatedGpuMemorySize

fastStatus t fastJpegEncoderGetAllocatedGpuMemorySize (

fastJpegEncoderHandle t handle,

unsigned *allocatedGpuSizeInBytes)

Returns requested GPU memory for JPEG Encoder.

Parameters:

handle[in] – JPEG Encoder handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for JPEG Encoder.

Statuses:

� FAST OK.

5.9.3 fastJpegEncoderChangeSrcBuffer

fastStatus t fastJpegEncodeChangeSrcBuffer (

Page 115 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastJpegEncoderHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer )

Sets new source buffer.

Parameters:

handle[in] – JPEG Encoder handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.9.4 fastJpegEncode

fastStatus t fastJpegEncode (

fastJpegEncoderHandle t handle,

unsigned quality,

fastJfifInfo t *jfifInfo)

Encodes surface to JPEG and store to host memory.

Parameters:

handle[in] – JPEG Encoder handle;

quality[in] – memory size in Bytes;

jfifInfo[in] – pointer to fastJfifInfo t struct that contains all necessary information for

JPEG encoding. For more detail see JPEG Encoder Description.

Notes:

The procedure takes surface from previous component of the pipeline through in-

put linked buffer and encodes it accordingly addition parameters from jfifInfo. JPEG

bytestream is placed to h Bytestream buffer in jfifInfo.

Buffer for JPEG bytestream in jfifInfo has to be allocated before call. Its recom-

Page 116 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

mended size is

surfaceHeight× surfacePitch4.

Real JPEG bytestream size is calculated during compression and put to bytestream-

Size in jfifInfo. If size of h Bytestream is not enough, then procedure returns status

FAST INTERNAL ERROR.

Members of jfifInfo exifSectionsCount and exifSections have to be initialized by 0.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNALIGNED DATA,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.9.5 fastJpegEncodeAsync

fastStatus t fastJpegEncode

(fastJpegEncoderHandle t handle,

unsigned quality,

fastJfifInfoAsync t *jfifInfo)

Encodes surface to JPEG and store to device memory.

Parameters:

handle[in] – JPEG Encoder handle;

quality[in] – adjusts output JPEG file size and quality. Quality is an integer value

from 1 to 100 where 100 means the best quality and maximum file size

of compressed image.

jfifInfo[in] – pointer to fastJfifInfoAsync t struct that contains all necessary informa-

tion for JPEG encoding. For more detail see JPEG Encoder description.

Notes:

The procedure takes surface from previous component of the pipeline through in-

Page 117 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

put linked buffer and encodes it accordingly addition parameters from jfifInfo. JPEG

bytestream is placed to d Bytestream buffer in jfifInfo. Memory for d Bytestream is allo-

cated by jpeg encoder.

Members of jfifInfo exifSectionsCount and exifSections have to be initialized by 0.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNALIGNED DATA,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.9.6 fastJpegEncodeWithQuantTable

fastStatus t fastJpegEncodeWithQuantTable (

fastJpegEncoderHandle t handle,

fastJpegQuantState t *quantTable,

fastJfifInfo t *jfifInfo)

Encodes surface to JPEG with defined quantization table and store to host memory.

Parameters:

handle[in] – JPEG Encoder handle;

quantTable[in] – user defined quantization table;

jfifInfo[in] – pointer to fastJfifInfo t struct that contains all necessary information

for JPEG encoding. For more detail see JPEG Encoder Description.

Notes:

The procedure takes surface from previous component of the pipeline through in-

put linked buffer and encodes it accordingly addition parameters from jfifInfo. JPEG

bytestream is placed to h Bytestream buffer in jfifInfo.

Buffer for JPEG bytestream in jfifInfo has to be allocated before call. Its recom-

Page 118 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

mended size is

surfaceHeight× surfacePitch4.

Real JPEG bytestream size is calculated during compression and put to bytestream-

Size in jfifInfo. If size of h Bytestream is not enough, then procedure returns status

FAST INTERNAL ERROR.

Members of jfifInfo exifSectionsCount and exifSections have to be initialized by 0.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNALIGNED DATA,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.9.7 fastJpegEncodeAsyncWithQuantTable

fastStatus t fastJpegEncodeAsyncWithQuantTable (

fastJpegEncoderHandle t handle,

fastJpegQuantState t *quantTable,

fastJfifInfoAsync t *jfifInfo)

Encodes surface to JPEG with defined quantization table and store to device memory.

Parameters:

handle[in] – JPEG Encoder handle;

quantTable[in] – user defined quantization table;

jfifInfo[in] – pointer to fastJfifInfoAsync t struct that contains all necessary in-

formation for JPEG encoding. For more detail see JPEG Encoder

description.

Notes:

The procedure takes surface from previous component of the pipeline through in-

put linked buffer and encodes it accordingly addition parameters from jfifInfo. JPEG

Page 119 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

bytestream is placed to d Bytestream buffer in jfifInfo. Memory for d Bytestream is allo-

cated by jpeg encoder.

Members of jfifInfo exifSectionsCount and exifSections have to be initialized by 0.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNALIGNED DATA,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.9.8 fastJpegEncoderDestroy

fastStatus t fastJpegEncoderDestroy (fastJpegEncoderHandle t handle)

Destroys JPEG encoder.

Parameters:

handle[in] – JPEG encoder handle.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.10 JPEG Decoder functions

5.10.1 fastJpegDecoderCreate

fastStatus t fastJpegDecoderCreate (

fastJpegDecoderHandle t *handle,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

Page 120 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

bool checkBytestream,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates JPEG Decoder and returns associated handle.

Parameters:

handle[out] – pointer to created JPEG Decoder;

surfaceFmt[in] – type of surface (decoded image). Surface is output for decoder.

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

checkBytestream[in] –

dstBuffer[out] – pointer for linked buffer for next component (output buffer of

current component).

Notes:

Function fastJpegDecoderCreate allocates all necessary buffers in GPU memory. Thus

in case GPU does not have enough free memory, then fastJpegDecoderCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

Maximum dimensions of the image are set to Decoder during creation. Thus if trans-

formation result exceeds the maximum value, then error status FAST INVALID SIZE will

be returned.

Only FAST RGB8 and FAST I8 surface formats are supported in other case

FAST UNSUPPORTED SURFACE will be returned.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNSUPPORTED SURFACE.

5.10.2 fastJpegDecoderGetAllocatedGpuMemorySize

fastStatus t fastJpegDecoderGetAllocatedGpuMemorySize (

Page 121 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastJpegDecoderHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for JPEG Decoder.

Parameters:

handle[in] – JPEG Decoder handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for JPEG Decoder.

Statuses:

� FAST OK.

5.10.3 fastJpegDecode

fastStatus t fastJpegDecode ( fastJpegDecoderHandle t handle,

fastJfifInfo t *jfifInfo)

Decodes JPEG to surface.

Parameters:

handle[in] – pointer to JPEG Decoder;

jfifInfo[in] – pointer to fastJfifInfo t struct that contains all necessary information for

JPEG decoding. For more detail see JPEG Encoder description.

Notes:

The procedure takes JPEG bytestream from h Bytestream buffer in jfifInfo. Addi-

tional parameters for decoding are also taken from jfifInfo. Decoded surface is placed to

output linked buffer and the following component of the pipeline consumes it. Struct

fastJfifInfo t for Decoder is populated by JfifLoad fuctions: fastJfifLoadFromFile and fastJ-

fifLoadFromMemory.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

Page 122 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST BITSTREAM CORRUPT.

5.10.4 fastJpegDecoderDestroy

fastStatus t fastJpegDecoderDestroy (fastJpegDecoderHandle t handle)

Destroys JPEG Decoder.

Parameters:

handle[in] – pointer to JPEG Decoder.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.11 JPEG CPU Decoder functions

5.11.1 fastJpegCpuDecoderCreate

fastStatus t fastJpegDecoderCreate (

fastJpegCpuDecoderHandle t *handle,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates JPEG CPU Decoder and returns associated handle.

Parameters:

Page 123 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[out] – pointer to created JPEG CPU Decoder;

surfaceFmt[in] – type of surface (decoded image). Surface is output for decoder;

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

dstBuffer[out] – pointer for linked buffer for next component (output buffer of current

component).

Notes:

Function fastJpegCpuDecoderCreate allocates all necessary buffers in GPU memory.

Thus in case GPU does not have enough free memory, then fastJpegDecoderCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

Only FAST RGB12 and FAST I12 surface formats are supported in other case

FAST UNSUPPORTED SURFACE will be returned.

Maximum dimensions of the image are set to Decoder during creation. Thus if trans-

formation result exceeds the maximum value, then error status FAST INVALID SIZE will

be returned.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNSUPPORTED SURFACE.

5.11.2 fastJpegCpuDecoderGetAllocatedGpuMemorySize

fastStatus t fastJpegCpuDecoderGetAllocatedGpuMemorySize (

fastJpegDecoderHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for JPEG CPU Decoder.

Parameters:

Page 124 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – JPEG Cpu Decoder handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for JPEG Decoder.

Statuses:

� FAST OK.

5.11.3 fastJpegCpuDecode

fastStatus t fastJpegCpuDecode (

fastJpegDecoderHandle t handle,

unsigned char *srcJpegStream,

const long jpegStreamSize,

fastJfifInfo t *jfifInfo)

Decodes JPEG to surface.

Parameters:

handle[in] – pointer to JPEG Decoder;

srcJpegStream[in] – pointer to buffer with entire jpeg file;

jpegStreamSize[in] – buffer size in Bytes;

jfifInfo[out] – pointer to fastJfifInfo t struct that takes jpeg parameters of de-

coded file.

Notes:

The procedure takes JPEG file from srcJpegStream. There are no additional pa-

rameters necessary for decoding. Decoded surface is placed to output linked buffer and

the following component of the pipeline consumes it. Struct fastJfifInfo t is populated by

fastJpegCpuDecode with parameters of decoded jpeg file.

Fields populated in fastJfifInfo t are

� width,

� height,

� bitsPerChannel,

Page 125 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� huffmanState (for luminance and chrominance),

� quantState (for luminance and chrominance),

� jpegFmt,

� restartInterval.

Decoder returns FAST IO ERROR if 8-bit jpeg will be supplied as input.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST BITSTREAM CORRUPT.

5.11.4 fastJpegDecoderDestroy

fastStatus t fastJpegCpuDecoderDestroy

(fastJpegCpuDecoderHandle t handle)

Destroys JPEG CPU Decoder.

Parameters:

handle[in] – pointer to JPEG CPU Decoder.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.12 JPEG I/O functions

5.12.1 fastJfifLoadFromFile

fastStatus t fastJfifLoadFromFile (

const char *filename,

Page 126 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastJfifInfo t *jfifInfo)

Loads JPEG image from disk to memory.

Parameters:

filename[in] – path to JPEG file;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Notes:

If JPEG file is not found, procedure returns FAST IO ERROR. If format of JPEG

file is not supported (for example 12-bit JPEG) function returns

FAST UNSUPPORTED FORMAT. If any errors occur during file parsing function re-

turns FAST INVALID FORMAT and puts the error description to stderr.

Buffer h Bytestream in jfifInfo should be allocated before the procedure call and its

size in Bytes should be set to bytestreamSize from jfifInfo. Buffer h Bytestream should

be allocated by fastMalloc. If size of h Bytestream is smaller than size of bytestream of

loaded image, then the function will return FAST INVALID SIZE.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST IO ERROR,

� FAST UNSUPPORTED FORMAT,

� FAST INSUFFICIENT HOST MEMORY.

5.12.2 fastJfifHeaderLoadFromFile

fastStatus t fastJpegLoadFromFile (

const char *filename,

fastJfifInfo t *jfifInfo)

Loads JPEG image header from disk to memory.

Parameters:

Page 127 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

filename[in] – path to JPEG file;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Notes:

If JPEG file is not found, procedure returns FAST IO ERROR. If format of JPEG

file is not supported (for example 12-bit JPEG) function returns

FAST UNSUPPORTED FORMAT. If any errors occur during file parsing function re-

turns FAST INVALID FORMAT and puts the error description to stderr.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST IO ERROR,

� FAST UNSUPPORTED FORMAT,

� FAST INSUFFICIENT HOST MEMORY.

5.12.3 fastJfifBytestreamLoadFromFile

fastStatus t fastJpegLoadFromFile (

const char *filename,

fastJfifInfo t *jfifInfo)

Loads JPEG image bytestream from disk to memory.

Parameters:

filename[in] – path to JPEG file;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Notes:

Structure fastJfifInfo t has to be populated by previous call fastJpegLoadHeader*.

Structure Buffer h Bytestream in jfifInfo should be allocated before the procedure

call and its size in Bytes should be set to bytestreamSize from jfifInfo. Buffer h Bytestream

should be allocated by fastMalloc. If size of h Bytestream is smaller than size of bytestream

of loaded image, then the function will return FAST INVALID SIZE.

Page 128 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST IO ERROR,

� FAST UNSUPPORTED FORMAT,

� FAST INSUFFICIENT HOST MEMORY.

5.12.4 fastJfifLoadFromMemory

fastStatus t fastJfifLoadFromMemory (

unsigned char *inputStream,

unsigned inputStreamSize,

fastJfifInfo t *jfifInfo)

Loads JPEG image from buffer into memory.

Parameters:

inputStream[in] – pointer to buffer with JPEG file;

inputStreamSize[in] – size of buffer with JPEG file in Bytes;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Notes:

If JPEG file format is not supported (for example 12-bit JPEG) function will return

FAST UNSUPPORTED FORMAT. If any errors occurs during file parsing function will

return FAST INVALID FORMAT and error description is put to stderr.

Buffer h Bytestream in jfifInfo should be allocated before the procedure call and its

size in Bytes should be set to bytestreamSize in jfifInfo. Buffer h Bytestream should be

allocated by fastMalloc. If size of h Bytestream is smaller than size of bytestream of

loaded image, then the function will return FAST INVALID SIZE.

Buffer inputStream and h Bytestream in jfifInfo must not overlap.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

Page 129 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED FORMAT,

� FAST INSUFFICIENT HOST MEMORY.

5.12.5 fastJfifLoadHeaderFromMemory

fastStatus t fastJfifLoadFromMemory (

unsigned char *inputStream,

unsigned inputStreamSize,

fastJfifInfo t *jfifInfo)

Loads JPEG image header from buffer into memory.

Parameters:

inputStream[in] – pointer to buffer with JPEG file;

inputStreamSize[in] – size of buffer with JPEG file in Bytes;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Notes:

If JPEG file format is not supported (for example 12-bit JPEG) function will return

FAST UNSUPPORTED FORMAT. If any errors occurs during file parsing function will

return FAST INVALID FORMAT and error description is put to stderr.

Buffer inputStream and h Bytestream in jfifInfo must not overlap.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED FORMAT,

� FAST INSUFFICIENT HOST MEMORY.

5.12.6 fastJfifLoadBytestreamFromMemory

fastStatus t fastJfifLoadFromMemory (

unsigned char *inputStream,

Page 130 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

unsigned inputStreamSize,

fastJfifInfo t *jfifInfo)

Loads JPEG image bytestream from buffer into memory.

Parameters:

inputStream[in] – pointer to buffer with JPEG file;

inputStreamSize[in] – size of buffer with JPEG file in Bytes;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Notes:

Structure fastJfifInfo t has to be populated by previous call fastJpegLoadHeader*.

Buffer h Bytestream in jfifInfo should be allocated before the procedure call and its

size in Bytes should be set to bytestreamSize from jfifInfo. Buffer h Bytestream should

be allocated by fastMalloc. If size of h Bytestream is smaller than size of bytestream of

loaded image, then the function will return FAST INVALID SIZE.

Buffer inputStream and h Bytestream in jfifInfo must not overlap.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED FORMAT,

� FAST INSUFFICIENT HOST MEMORY.

5.12.7 fastJfifStoreToFile

fastStatus t fastJfifStoreToFile (

const char*filename,

fastJfifInfo t *jfifInfo)

Serializes JPEG bytestream to file.

Parameters:

Page 131 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

filename[in] – path to JPEG file;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST IO ERROR.

5.12.8 fastJfifStoreToMemory

fastStatus t fastJfifStoreToMemory (

unsigned char *outputStream,

unsigned *outputStreamSize,

fastJfifInfo t *jfifInfo)

Serializes JPEG bytestream to memory buffer.

Parameters:

outputStream[out] – pointer to buffer for JPEG format serialization. Buffer is

allocated by customer application.

outputStreamSize[out] – size of buffer for JPEG format serialization in Bytes;

jfifInfo[in] – pointer to structure with parsed JPEG file.

Notes:

Buffer for serialization has to be allocated before call. Its size is

surfaceHeight× surfaceWidth× numberOfChannels.

Real size of serialized file will be returned in outputStreamSize.

Buffer outputStream and h Bytestream in jfifInfo must not overlap.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

Page 132 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST UNKNOWN ERROR.

5.13 JPEG2000 Encoder functions

5.13.1 fastEncoderJ2kLibraryInit

fastStatus t fastEncoderJ2kLibraryInit (

fastSdkParametersHandle t handle)

Initializes fastEncoderJ2k library before any other call to encoder function/procedure.

Parameters:

handle [in] – pointer to SDK global options handle

Statuses:

� FAST OK

5.13.2 fastEncoderJ2kCreate

fastStatus t fastEncoderJ2kCreate (

fastEncoderJ2kHandle t *handle,

fastEncoderJ2kStaticParameters t *parameters,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

unsigned maxBatchSize,

fastDeviceSurfaceBufferHandle t srcBuffer)

Creates JPEG2000 Encoder and returns associated handle.

Parameters:

Page 133 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[out] – pointer to the created JPEG2000 Encoder handle;

parameters[in] – structure, which specifies encoder parameters (lossy/lossless com-

pression algorithm, number of DWT levels, codeblock size, maxi-

mum quality coefficient etc.)

surfaceFmt[in] – surface format of input image;

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

maxBatchSize[in] – maximum number of simultaneously processed images in batch;

srcBuffer[in] – linked buffer from the previous component.

Notes:

The same encoder component and interface functions/procedures are used for both

lossy and lossless compression.

The procedure fastEncoderJ2kCreate allocates all necessary buffers in GPU mem-

ory. So, if GPU does not have enough free memory, then fastEncoderJ2kCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

Maximum dimensions of the images should be specified for Encoder creation. Thus, if

size of an input image exceeds the maximum size, then error status FAST INVALID SIZE

will be returned.

If encoder does not support the specified surface format, then the function will return

FAST UNSUPPORTED SURFACE.

Setting maxBatchSize value to 1 allows the single mode of processing only, while

minimizing amount of the allocated memory. When higher performance is needed, use

greater values of maxBatchSize for encoding in the batch mode, although it will require

much more GPU memory. In that case the single mode will remain available.

StructurefastEncoderJ2kStaticParameters t is static parameter for JPEG2000 En-

coder.

typedef struct {
bool lossless;

bool pcrdEnabled;

bool noMCT;

bool yuvSubsampledFormat;

int overwriteSurfaceBitDepth;

Page 134 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

int outputBitDepth;

int dwtLevels;

int codeblockSize;

float maxQuality;

bool info;

int tileWidth;

int tileHeight;

int tier2Threads;

int ss1 x, ss1 y, ss2 x, ss2 y, ss3 x, ss3 y;

} fastEncoderJ2kStaticParameters t

where

� lossless – this parameter switches between reversible/lossless (when true) and ir-

reversible/lossy (when false) compression. It affects the following stages: Multi-

Component Transformation (MCT), Quantization, Discrete Wavelet Transform

(DWT). In the lossless mode the reconstructed image should be fully identical to

the original. In the lossy mode each of those three optional stages introduces some

distortions. Small distortions on MCT and DWT stages of lossy compression are

due to rounding of floating point arithmetic. Lossy compression algorithm allows

fine control of the amount of distortions via Quantization and PCRD (truncation

of codeblocks after compression), which are unavailable in the lossless mode.

In lossless mode the lossless version of MCT is used (specified for 3 component

images only), and integer-valued DWT transformation with CDF 5/3 wavelet is

used. Lossy mode implies lossy version of MCT and floating point-values DWT

transformation (with CDF 9/7 wavelet).

This parameter can significantly affect size of compressed bytestream, com-

pression speed and amount of GPU memory required.

� pcrdEnabled – this parameter enables or disables truncation of codeblocks using

PCRD (Post-Compression Rate-Distortion) algorithm, which allows forcible fitting

of compressed bytestreams to the given size (or bitrate). PCRD is useful in cases

where certain specification should be respected (e.g., Digital Cinema Profile). The

corresponding size limit should be specified via parameter targetStreamSize of fas-

tEncoderJ2kDynamicParameters t structure.

PCRD, when enabled, slightly increases encoding time (but much less compared

to the similar feature of the classic JPEG), so it is recommended to use quantiza-

Page 135 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

tion (see maxQuality parameter) instead to get maximum compression speed when

reduced image quality is acceptable and there is no strict limit on the size of com-

pressed image. This parameter is ignored in the lossless mode.

� noMCT – this parameter disables (when true) or enables Multi-Component Transfor-

mation (MCT). MCT is applicable only to 3 components, so this option is ignored

when image has 2 or 1 components. The main purpose of MCT is reducing the

correlations (if any) amongst the image components, which increases compression

performance in most cases. It can be useful to disable it when components are

already decorrelated (e.g. when image is already in YUV color space).

� yuvSubsampledFormat – this parameter enables (when true) encoding of image with

subsampled components. When subsampling is not used, it should be false.

� overwriteSurfaceBitDepth – this parameter allows changing bit depth of the source

image before compression. The supported values are currently limited to 9–16 bits,

and the original surface format must have 9–16 bits per component too. For example,

it can be useful when encoding 10-bit images, because there is no FAST RGB10

surface format in Fastvideo SDK.

� outputBitDepth – this parameter allows changing bit depth of the compressed image

compared to the input image. The supported values are currently limited to 9–16

bits, and the original surface format must have 9–16 bits per component too. For

example, it can be useful when there is no need to retain 16-bit depth of the original

image, while it is beneficial to reduce bit rate and processing time.

� dwtLevels – number of Discrete Wavelet Transformation (DWT) levels (also known

as decomposition levels). The supported values are from 0 up to 11. Such de-

composition is used for two reasons: increasing efficiency of compression (quality /

bytestream size ratio), ability to transmit and/or quickly decode lower resolution

version of an image. Each successive decomposition level adds factor of two smaller

resolution. So, for example, 6 decomposition levels for 4K (4096Ö2160) image means

7 resolution levels are available to decoder down to 128Ö34. The largest difference

of compression ratio is for 0 and 1 values of dwtLevels parameter and each succes-

sive level gives less and less efficiency gain. The effect of number of decomposition

levels on encoding time decreases too. 5–6 levels of decomposition seem to be a

good choice for 4K images.

� codeblockSize – size (width and height) of codeblocks. The only supported values

are 64, 32 and 16, which correspond to the square codeblock sizes: 64Ö64, 32Ö32,

16Ö16, respectively. Image (more accurately, image subbands) is partitioned into

Page 136 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

codeblocks for the following reasons:

1. fine control of quality / bytestream size ratio;

2. it allows parallel encoding/decoding of multiple codeblocks on multiple

CPU/GPU cores for better speed;

3. it allows fast access to arbitrary regions of the image, which can be useful for

partial viewing and editing;

4. it allows Region of interest (ROI) coding, when certain region(s) should be

stored with minimal loss of quality;

5. it allows high robustness to errors (errors introduced by noisy communication

channel or unreliable storage device).

Less size of codeblocks means more codeblocks means more metadata should

be encoded and stored, which slightly affects compression ratio and can significantly

affect compression speed (due to partial load of GPU cores when there is too few

codeblocks). From the perspective of compressed image size, the codeblock size

64Ö64 is always the best choice, but the difference from size 32Ö32 and 16Ö16 is

often insignificant. From the perspective of encoding/decoding speed, codeblock

size 16Ö16 is optimal for low resolution images, 32Ö32 – for the most standard

images (2K, 4K, 8K), and 64x64 – for larger images, depending on GPU type and

acceptable batch size (in the batch mode).

� maxQuality – maximum image quality coefficient. The supported values are from

0 to 1.0, where 1.0 means no quantization and smaller values used to get more

quantized image with less bytestream size. This is the main instrument to finely

control compression ratio (considering that smaller bytestream size means greater

quality loss), which also significantly affects encoding time and the amount of GPU

memory required. Its value is ignored in the lossless mode.

It directly (but non-linearly) determines quantization coefficients and therefore

distortion of compressed image. The optimal value depends on image itself and on

quality requirements (which are different for different usage types). Quality losses

mainly depend on image content (complexity), but they also depend on image size,

number of color components and bit depth.

This parameter should be used in pair with the parameter quality of fastEn-

coderJ2kDynamicParameters t structure, where the quality specified for every indi-

vidual image can not be greater than the maxQuality value due to its effect on

memory requirements.

This parameter can be used in PCRD mode too (with parameters pcrdEnabled,

Page 137 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

targetStreamSize). It can be useful to decrease encoding time, when target size is

significantly lower than size of bytestream without quantization.This parameter is

ignored in the lossless mode.

� info – this parameter enables or disables collecting of additional info during encod-

ing process (e.g., time measurement of different encoding stages). The collected

info is passed via fastEncoderJ2kReport t structure after encoding. Disabling this

parameter will slightly increase encoding speed.

� tileWidth – tile width in pixels. You can specify any integer value, but only values

less than maximum image width can be useful. Zero means no tiling (single tile).

Tiling is optional and should not be used when no necessary due to quality

losses at the boundaries between tiles (except when lossless mode is enabled). Each

tile is processed fully separately in encoder/decoder. There are two main reasons to

use tiling: shortage of GPU memory when encoding very large images and ability

to decode and/or process parts of large images. Tiling is currently supported in the

single image mode only.

� tileHeight – tile height in pixels. You can specify any integer value, but only values

less than maximum image height can be useful. Zero means no tiling (single tile).

Tiling is optional and should not be used when no necessary due to quality

losses at the boundaries between tiles (except when lossless mode is enabled). Each

tile is processed fully separately in encoder/decoder. There are two main reasons to

use tiling: shortage of GPU memory when encoding very large images and ability

to decode and/or process parts of large images. Tiling is currently supported in the

single image mode only.

� tier2Threads – number of CPU threads for Tier-2 stage processing. The supported

values start from 1. It affects compression speed only. The optimal value depends on

the number of subbands (i.e. number of decomposition levels and color components),

number of codeblocks and number of available CPU cores. 3–4 threads seem to be

an optimal choice for CPU with 4 or more logical cores in most standard cases.

� ss1 x, ss1 y, ss2 x, ss2 y, ss3 x, ss3 – parameters for specifying the horizontal and

vertical subsampling factors for each of three image components. It is supposed,

that the input image has no subsampling. Subsampling is disabled when all these

values equal to 1. The 4:2:2 subsampling mode can be set with values 1, 1, 2, 1,

2, 1. The 4:2:0 subsampling mode can be set with values 1, 1, 2, 2, 2, 2. If you

need to encode already subsampled image, then you have to upsample it and set

the required values of these parameters.

Page 138 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST UNSUPPORTED SURFACE,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.13.3 fastEncoderJ2kGetAllocatedGpuMemorySize

fastStatus t fastEncoderJ2kGetAllocatedGpuMemorySize (

fastEncoderJ2kHandle t handle,

unsigned long long *allocatedGpuSizeInBytes)

The function returns the GPU memory size allocated for JPEG2000 Encoder.

Parameters:

handle[in] – JPEG2000 Encoder handle;

allocatedGpuSizeInBytes[out] – size of allocated GPU memory in bytes

Statuses:

� FAST OK.

5.13.4 fastEncoderJ2kTransform

fastStatus t fastEncoderJ2kTransform (

fastEncoderJ2kHandle t handle,

fastEncoderJ2kDynamicParameters t *parameters,

unsigned width,

unsigned height,

fastEncoderJ2kOutput t *output,

fastEncoderJ2kReport t *report)

Encodes surface to JPEG2000 format, stores the result into host memory and returns

report.

Parameters:

Page 139 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – JPEG2000 Encoder handle;

parameters[in] – structure, which specifies parameters for the current image: if JP2

file header is needed, quality coefficient, target stream size in bytes

(optional). Note that the value of quality coefficient should not ex-

ceed the value of maxQuality field of fastEncoderJ2kStaticParameters t

structure passed to fastEncoderJ2kCreate;

width[in] – image width in pixels;

height[in] – image height in pixels;

output[in/out] – structure, where output JP2/J2K bytestream is copied to, taking

into account the specified buffer size;

report[out] – structure, where measured duration of each encoding stage and some

other values (e.g., codeblock count) are written to.

Notes:

The procedure takes surface from previous component of the pipeline through in-

put linked buffer and encodes it accordingly to the parameters specified during encoder

creation.

JPEG2000 bytestream is placed to output → byteStream buffer.

Buffer for JPEG2000 bytestream must be allocated before call. Real JPEG2000

bytestream size is calculated during compression and put to output → streamSize field. If

bufferSize is too small, then the stream is truncated, and the truncated flag is set.

Structure fastEncoderJ2kDynamicParameters t is passed to functions fastEncoderJ2kTransform

and fastEncoderJ2kAddImageToBatch for encoding individual images.

typedef struct {
bool writeHeader;

float quality;

long targetStreamSize;

} fastEncoderJ2kDynamicParameters t

where

� writeHeader – this parameter enables or disables writing of JP2 file header to the

output. JP2 Header is useful (but not required) for individual images, while it is

usually disabled when encoding video sequences (where multiple frames should be

Page 140 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

stored in a single file). Files with JP2 Header have extension “.jp2”, while files

with individual images without JP2 Header usually (it is not standardized) have

extension “.jpc” or “.j2k”.

� quality – this parameter allows controlling file size for individual images on quan-

tization stage. The supported values are from 0 to 1.0, but the value should not

exceed the value of maxQuality parameter specified for the current encoder instance

due to its effect on memory requirements. This parameter should be used in pair

with the parameter maxQuality of fastEncoderJ2kStaticParameters t structure.

This parameter can be used in PCRD mode too (with parameters pcrdEnabled,

targetStreamSize). It can be useful to decrease encoding time, when target size is

significantly lower than size of bytestream without quantization. This parameter is

ignored in the lossless mode.

� targetStreamSize – this parameter is used when pcrdEnabled is true only. It allows

to forcibly control maximum bytestream size (in bytes) by truncation of encoded

codeblocks using PCRD algorithm. Set this parameter to zero when PCRD should

be disabled (here you have option to enable it only for some of the processed images).

PCRD, when enabled, slightly increases encoding time (but much less compared to

the similar feature of the classic JPEG), so it is recommended to use quantization

(see quality parameter) instead to get maximum compression speed when reduced

image quality is acceptable. It is normal to get significantly greater compression

ratio when low values of this parameter are chosen, because PCRD can shrink file

size only (via truncation of codeblocks) and not increase. This parameter is ignored

in the lossless mode.

Structure fastEncoderJ2kReport t is returned by functions fastEncoderJ2kTransform,

fastEncoderJ2kTransformBatch and fastEncoderJ2kGetNextEncodedImage after encoding.

typedef struct {
double s1 preprocessing;

double s2 dwt;

double s3 tier1;

double s4 pcrd;

double s5 gathering;

double s6 copy;

double s7 tier2;

double s8 write;

Page 141 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

double elapsedTime;

int codeblockCount;

int maxCodeblockLength;

int copySize;

int outputSize;

} fastEncoderJ2kReport t

� s1 preprocessing – duration (in seconds) of the first stage of encoding, namely “pre-

processing”. It is filled when info parameter is enabled.

� s2 dwt – duration (in seconds) of the second stage of encoding, namely “DWT

decomposition”. It is filled when info parameter is enabled.

� s3 tier1 – duration (in seconds) of the third stage of encoding, namely “Tier-1”. It

is filled when info parameter is enabled.

� s4 pcrd – duration (in seconds) of the fourth stage of encoding, namely “PCRD”.

It is filled when info parameter is enabled.

� s5 gathering – duration (in seconds) of the fifth stage of encoding, namely “gathering

of codeblocks”. It is filled when info parameter is enabled.

� s6 copy - duration (in seconds) of the sixth stage of encoding, namely “copy

GPU–¿CPU”. It is filled when info parameter is enabled.

� s7 tier2 – duration (in seconds) of the seventh stage of encoding, namely “Tier-2”.

It is filled when info parameter is enabled.

� s8 write - duration (in seconds) of the eighth stage of encoding, namely “writing

output”. It is filled when info parameter is enabled.

� elapsedTime – total duration (in seconds) of encoding of single image. It is filled

when info parameter is enabled.

� codeblockCount – total number of codeblocks for the current image. It allows es-

timating degree of parallelization of encoding algorithms and size of metadata in

output.

� maxCodeblockLength – this field stores maximum length of byte stream of encoded

codeblock. It allows estimating maximum local complexity of the current image.

� copySize – size (in bytes) of data copied from GPU to CPU.

� outputSize – size (in bytes) of output byte stream.

Statuses:

� FAST OK,

Page 142 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST INVALID HANDLE,

� FAST INVALID VALUE,

� FAST INVALID SIZE,

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

� FAST UNKNOWN ERROR.

5.13.5 fastEncoderJ2kFreeSlotsInBatch

fastStatus t fastEncoderJ2kFreeSlotsInBatch (

fastEncoderJ2kHandle t handle,

int *value)

The function returns the number of free slots in batch for JPEG2000 Encoder.

Parameters:

handle[in] – JPEG2000 Encoder handle;

value[out] – number of free slots.

Statuses:

� FAST OK.

5.13.6 fastEncoderJ2kUnprocessedImagesCount

fastStatus t fastEncoderJ2kUnprocessedImagesCount (

fastEncoderJ2kHandle t handle,

int *value)

The function returns the number of unprocessed images in batch for JPEG2000

Encoder.

Parameters:

handle[in] – JPEG2000 Encoder handle;

value[out] – number of unprocessed images.

Statuses:

� FAST OK.

Page 143 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.13.7 fastEncoderJ2kAddImageToBatch

fastStatus t fastEncoderJ2kAddImageToBatch (

fastEncoderJ2kHandle t handle,

fastEncoderJ2kDynamicParameters t *parameters,

unsigned width,

unsigned height)

Adds image to queue for batch processing (if free slots are available).

Parameters:

handle[in] – JPEG2000 Encoder handle;

parameters[in] – structure, which specifies parameters for the current image: if JP2

file header is needed, quality coefficient, target stream size in bytes

(optional). Note that the value of quality coefficient should not ex-

ceed the value of maxQuality field of fastEncoderJ2kStaticParameters t

structure passed to fastEncoderJ2kCreate;

width[in] – image width in pixels;

height[in] – image height in pixels.

Notes:

The procedure takes surface from the previous component of the pipeline through

input linked buffer and adds it to queue for subsequent batch processing. When this

procedure returns control, the input buffer can be used to store another image or be

disposed.

The maximum number of the free slots is equal to the value of maxBatchSize param-

eter passed to fastEncoderJ2kCreate.

The availability of free slots in the batch can be checked using fastEncoderJ2kFreeSlotsInBatch

function.

The input buffer can be reused immediately after a call to fastEncoderJ2kAddImageToBatch.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INVALID VALUE,

� FAST INVALID SIZE,

Page 144 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

� FAST UNKNOWN ERROR.

5.13.8 fastEncoderJ2kTransformBatch

fastStatus t fastEncoderJ2kTransformBatch (

fastEncoderJ2kHandle t handle,

fastEncoderJ2kOutput t *output,

fastEncoderJ2kReport t *report)

Encodes multiple surfaces to JPEG2000 format by using batch processing.

Parameters:

handle[in] – JPEG2000 Encoder handle;

output[in/out] – structure, where the first output JP2/J2K bytestream is copied to,

taking into account the specified buffer size;

report[out] – structure, where elapsed time is written to.

Notes:

The procedure takes all surfaces, which have been added using fastEncoderJ2kAddImageToBatch

procedure, encodes them and stores the first of the resulted JPEG2000 bytestreams into

host memory. The rest bytestreams can be obtained via fastEncoderJ2kGetNextEncodedImage

function.

Buffer for the returned JPEG2000 bytestream must be allocated before call.

Actual JPEG2000 bytestream size is calculated during compression and put to

output → streamSize field. If bufferSize is too small, then the stream is truncated, and

the truncated flag is set.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INVALID VALUE,

� FAST INVALID SIZE,

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

Page 145 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST UNKNOWN ERROR.

5.13.9 fastEncoderJ2kGetNextEncodedImage

fastStatus t fastEncoderJ2kGetNextEncodedImage (

fastEncoderJ2kHandle t handle,

fastEncoderJ2kOutput t *output,

fastEncoderJ2kReport t *report,

int *imagesLeft)

Returns the next compressed image during batch processing.

Parameters:

handle[in] – JPEG2000 Encoder handle;

output[in/out] – structure, where the successive output JP2/J2K bytestream is

copied to, taking into account the specified buffer size;

imagesLeft[out] – number of compressed images, which can be returned by successive

calls;

report[out] – structure, where elapsed time is written to.

Notes:

The procedure stores the successive resulted JPEG2000 bytestream into host memory,

if there is at least one compressed bytestream left after the previous calls.

Buffer for the returned JPEG2000 bytestream must be allocated before call. Real

JPEG2000 bytestream size is calculated during compression and put to

output → streamSize field. If bufferSize is too small, then the stream is truncated, and

the truncated flag is set.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

� FAST UNKNOWN ERROR.

Page 146 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.13.10 fastEncoderJ2kDestroy

fastStatus t fastEncoderJ2kDestroy (

fastEncoderJ2kHandle t handle)

Destroys JPEG2000 Encoder.

Parameters:

handle[in] – JPEG2000 Encoder handle.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.14 JPEG2000 Decoder functions

5.14.1 fastDecoderJ2kLibraryInit

fastStatus t fastDecoderJ2kLibraryInit (

fastSdkParametersHandle t handle)

Initializes fastDecoderJ2k library before any other call to encoder function/procedure.

Parameters:

handle [in] – pointer to SDK global options handle

Statuses:

� FAST OK

5.14.2 fastDecoderJ2kPredecode

fastStatus t fastDecoderJ2kPredecode (

fastJ2kImageInfo t *imageInfo,

unsigned char *byteStream,

long streamSize)

Predecode JPEG2000 image.

Parameters:

Page 147 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

imageInfo [out] – structure with obtained image parameters;

byteStream [in] – source buffer with compressed image data;

streamSize [in] – source data length.

Notes: The function gets basic parameters of the image, such as image size, number of

components, maximum bit depth etc., from the JPEG2000 main header without decoding

the image. Statuses:

� FAST OK.

5.14.3 fastDecoderJ2kCreate

fastStatus t fastDecoderJ2kCreate (

fastDecoderJ2kHandle t *handle,

fastDecoderJ2kStaticParameters t *staticParameters,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

unsigned maxBatchSize,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates JPEG Decoder and returns associated handle.

Parameters:

handle[out] – pointer to the created JPEG2000 Decoder handle;

staticParameters[in] – structure, which specifies decoder parameters (main image param-

eters, number of decoded resolution levels, maximum tile size, max-

imum stream size, truncation parameters, window parameters etc.)

surfaceFmt[in] – type of surface for decoded image;

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

maxBatchSize[in] – maximum number of simultaneously processed images in batch;

dstBuffer[out] – pointer for output buffer of the current component (which is

also linked buffer for the next component).

Page 148 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Notes:

Function fastDecoderJ2kCreate allocates all necessary buffers in GPU memory. Thus

in case GPU does not have enough free memory, then fastDecoderJ2kCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

Maximum dimensions of the image are set to Decoder during creation. Thus, if size

of the decoded image exceeds the maximum size, then error status FAST INVALID SIZE

will be returned.

Structure fastDecoderJ2kStaticParameters t is passed to function fastDecoderJ2kCreate

when creating JPEG2000 Decoder.

typedef struct {
int verboseLevel;

int maxTileWidth;

int maxTileHeight;

int ResolutionLevels;

int DecodePasses;

size t maxStreamSize;

bool truncationMode;

float truncationRate;

int truncationLength;

int windowX0;

int windowY0;

int windowWidth;

int windowHeight;

bool enableROI;

bool enableMemoryReallocation;

fastJ2kImageInfo t *imageInfo;

} fastDecoderJ2kStaticParameters t

� verboseLevel – this parameter controls output of additional info during decoding

process. The supported values are 0 (additional output is disabled) and 1 (time

measurement is enabled). Higher values are reserved for debugging. The collected

info is passed via fastDecoderJ2kReport t structure after decoding. Disabling this

parameter will slightly increase decoding speed.

� maxTileWidth – maximum width for each tile. It affects the amount of GPU memory

Page 149 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

required. Zero value means it will become equal to maxSrcWidth parameter.

� maxTileHeight – maximum height for each tile. It affects the amount of GPU memory

required. Zero value means it will become equal to nfmaxSrcHeight parameter.

� ResolutionLevels – this parameter allows reducing number of decoded resolution lev-

els. The supported values are from 1 to 12. It can be used to speedup decoding when

lesser image resolution is acceptable (e.g., when viewing 4K video on 2K display).

Zero value means all resolution levels will be decoded.

� DecodePasses – this parameter allows reducing number of decoded passes of each

codeblock. The supported values are from 1 to 48, but total number of passes of

an image equals to 1 + 3 * (bit depth). It can be used to speedup decoding when

lesser image quality is acceptable.

Each bitplane of a codeblock is encoded in three passes except the first bitplane,

which is encoded in a single pass. Each subsequent pass adds less details to the

image, so we can skip some of the tail passes to decrease Tier-1 decoding time while

losing invisible or minor details of the image.

The number of passes may differ for various codeblocks, but this parameter is

applied to all of them in such a way that each codeblock is truncated proportionally

to its number of passes. This approach allows reaching greater performance/quality

ratio than approach with truncating only codeblocks with more passes.

� maxStreamSize – this parameter allow allocating memory for encoded image (input

bytestream) with a reserve. It can be useful to avoid memory reallocation when

decoding multiple images with different size of their bytestreams.

� truncationMode – enables or disables truncation of input byte stream.

� truncationRate – target bitrate (independent of image size) for truncation mode. It

only affects decoding when truncationMode is true. Only one of two parameters

(truncationRate, truncationLength) should be used (i.e. have positive value).

� truncationLength – target stream length in bytes for truncation mode. It only affects

decoding when truncationMode is true. Only one of two parameters (truncationRate,

truncationLength) should be used (i.e. have positive value).

� windowX0, windowY0, windowWidth, windowHeight – these four parameters allow

decoding rectangular region of the image (faster than decoding the whole image).

� enableROI - enables or disables processing of ROI (Region Of Interest) information.

� enableMemoryReallocation - enables or disables memory reallocation during each

call of fastDecoderJ2kTransform or fastDecoderJ2kTransformBatch procedures when

necessary. When decoding of an image requires more memory and this parameter

Page 150 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

is disabled, FAST INSUFFICIENT DEVICE MEMORY error will be returned.

� ImageInfo - this parameter is used to provide information needed to determine size

of memory to be allocated: tile size, codeblock size, number of components, etc.

typedef struct {
fastSurfaceFormat t decoderSurfaceFmt;

J2kCapability t capabilities;

unsigned width;

unsigned height;

unsigned tileWidth;

unsigned tileHeight;

unsigned codeblockWidth;

unsigned codeblockHeight;

unsigned resolutionLevels;

size t streamSize;

bool subsamplingUsed;

int componentCount;

fastJ2kComponentInfo t components[8];

} fastJ2kImageInfo t

� decoderSurfaceFmt - this field stores the surface format of an image, determining

number of components and maximum bit depth of these components;

� capabilities - this field denotes capabilities that a decoder needs to properly decode

the codestream according to the JPEG 2000 standard (Rsiz marker). Only few

values are compatible with Part I of the standard;

� width, height – dimensions of the image;

� tileWidth, tileHeight – tile size in the encoded image;

� codeblockWidth, codeblockHeight - codeblock size in the encoded image;

� resolutionLevels – number of resolution levels in the encoded image;

� streamSize – size of byte stream of the encoded image;

� subsamplingUsed - shows is subsampling of some components is used;

� componentCount - number of components;

� components - bit depth and subsampling parameters of each component.

typedef struct {
int bitDepth;

Page 151 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

int subsamplingX;

int subsamplingY;

} fastJ2kComponentInfo t

� bitDepth – bit depth of a particular component;

� subsamplingX, subsamplingY – horizontal and vertical subsampling of a particular

component.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST UNSUPPORTED SURFACE,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.14.4 fastDecoderJ2kGetAllocatedGpuMemorySize

fastStatus t fastDecoderJ2kGetAllocatedGpuMemorySize (

fastDecoderJ2kHandle t handle,

unsigned long long *allocatedGpuSizeInBytes)

Returns the GPU memory size allocated for JPEG2000 Decoder.

Parameters:

handle[in] – JPEG2000 Decoder handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Statuses:

� FAST OK.

5.14.5 fastDecoderJ2kTransform

fastStatus t fastDecoderJ2kTransform (

fastDecoderJ2kHandle t handle,

unsigned char *byteStream,

Page 152 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

long streamSize,

fastDecoderJ2kReport t *report)

Decodes JPEG2000 image to surface and returns report.

Parameters:

handle[in] – pointer to JPEG2000 Decoder;

byteStream[in] – input bytestream with compressed image;

streamSize[in] – size of input bytestream;

report[out] – structure, where measured duration of each decoding stage and some

other values (e.g., codeblock count, output image parameters) are

written to.

Notes:

The procedure takes JPEG2000 bytestream and decodes it. The decoded surface

is placed to the output linked buffer and the following component of the pipeline can

consume it.

typedef struct {
double s0 init;

double s1 tier2;

double s2 copy;

double s3 tier1;

double s4 roi;

double s5 dequantize;

double s6 dwt;

double s7 postprocessing;

double elapsedTime;

int codeblockCount;

int copyToGpu size;

int copyToHost size;

long long inStreamSize;

long long outStreamSize;

int width;

int height

Page 153 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

int channels

int bitsPerChannel;

int tileCount;

int tilesX;

int tilesY;

int resolutionLevels;

int cbX

int cbY;

ProgressionType progressionType;

WaveletType dwtType;

MCT Type mctType;

} fastDecoderJ2kReport t

� s0 init – duration of the initialization stage of decoding. It is filled when verboseLevel

equals to 1 or greater values;

� s1 tier2 – duration of the first stage of decoding, namely “Tier-2”. It is filled when

verboseLevel equals to 1 or greater values;

� s2 copy – duration of the second stage of decoding, namely “Copy CPU-¿GPU”. It

is filled when verboseLevel equals to 1 or greater values.

� s3 tier1 – duration of the third stage of decoding, namely “Tier-1”. It is filled when

verboseLevel equals to 1 or greater values;

� s4 roi – duration of the fourth stage of decoding, namely “ROI”. It is filled when

verboseLevel equals to 1 or greater values;

� s5 dequantize - duration of the fifth stage of decoding, namely “Dequantize”. It is

filled when verboseLevel equals to 1 or greater values;

� s6 dwt - duration of the sixth stage of decoding, namely “Inverse DWT”. It is filled

when verboseLevel equals to 1 or greater values;

� s7 postprocessing - duration of the seventh stage of decoding, namely “Post-

processing”. It is filled when verboseLevel equals to 1 or greater values;

� elapsedTime - total duration (in seconds) of decoding of single image. It is filled

when verboseLevel equals to 1 or greater values;

� codeblockCount - total count of codeblocks in the image;

� copyToGpu size - size (in bytes) of data copied from CPU to GPU;

� copyToHost size - size (in bytes) of data copied from GPU to CPU;

� inStreamSize - size (in bytes) of input stream;

Page 154 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� outStreamSize - size (in bytes) of output stream;

� width - image width;

� height - image height;

� channels - number of color components;

� bitsPerChannel - bit depth in every color component;

� tileCount - total tile count;

� tilesX - horizontal number of tiles;

� tilesY - vertical number of tiles;

� resolutionLevels - number of resolution levels (it is number of DWT levels plus one);

� cbX - horizontal size of all codeblocks (except codeblocks at the right boundary);

� cbY - vertical size of all codeblocks (except codeblocks at the bottom boundary);

� progressionType – type of progression order in byte stream. The Standard defines 5

different orders, where LRCP (layer-resolution-component-position) is specified as

the default order;

� dwtType – type of wavelet used in DWT stage (usually, CDF 9/7 for lossy compres-

sion and CDF 5/3 for lossless compression);

� mctType – type of Multi-Component Transformation (lossy, lossless or none).

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INVALID VALUE,

� FAST INVALID SIZE,

� FAST BITSTREAM CORRUPT,

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

� FAST UNKNOWN ERROR.

5.14.6 fastDecoderJ2kFreeSlotsInBatch

fastStatus t fastDecoderJ2kFreeSlotsInBatch (

fastDecoderJ2kHandle t handle,

int *value)

Returns the number of free slots in batch for JPEG2000 Decoder.

Page 155 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Parameters:

handle[in] – JPEG2000 Decoder handle;

value[out] – number of free slots.

Statuses:

� FAST OK.

5.14.7 fastDecoderJ2kUnprocessedImagesCount

fastStatus t fastDecoderJ2kUnprocessedImagesCount (

fastDecoderJ2kHandle t handle,

int *value)

Returns the number of unprocessed images in batch for JPEG2000 Decoder.

Parameters:

handle[in] – JPEG2000 Decoder handle;

value[out] – number of unprocessed images.

Statuses:

� FAST OK.

5.14.8 fastDecoderJ2kAddImageToBatch

fastStatus t fastDecoderJ2kAddImageToBatch (

fastDecoderJ2kHandle t handle,

unsigned char *byteStream,

long streamSize)

Adds image to queue for batch processing (if free slots are available) and returns

immediately.

Parameters:

handle[in] – JPEG2000 Decoder handle;

byteStream[in] – input bytestream with compressed image;

streamSize[in] – size of input bytestream.

Page 156 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Notes:

The procedure takes JPEG2000 bytestream and adds it to queue for batch processing

using fastDecoderJ2kTransformBatch procedure. When this procedure returns control, the

input buffer can be used to store another image or be disposed.

The maximum number of the free slots is equal to the value of maxBatchSize param-

eter passed to fastEncoderJ2kCreate.

The availability of free slots in the batch can be checked using fastDecoderJ2kFreeSlotsInBatch

function.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INVALID VALUE,

� FAST INVALID SIZE,

� FAST BITSTREAM CORRUPT,

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

� FAST UNKNOWN ERROR.

5.14.9 fastDecoderJ2kTransformBatch

fastStatus t fastDecoderJ2kTransformBatch (

fastDecoderJ2kHandle t handle,

fastDecoderJ2kReport t *report)

Decodes multiple JPEG2000 images to surfaces using batch processing.

Parameters:

handle[in] – JPEG2000 Decoder handle;

report[out] – structure, where measured duration of each decoding stage and some

other values (e.g., codeblock count, output image parameters) are writ-

ten to.

Notes:

The procedure takes all images, which have been added using fastDecoderJ2kAddImageToBatch

procedure, decodes them and stores the first of the resulted surfaces. The decoded surface

is placed to the output linked buffer and the following component of the pipeline can con-

Page 157 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

sume it. The rest surfaces should be obtained via fastDecoderJ2kGetNextDecodedImage

function.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INVALID VALUE,

� FAST INVALID SIZE,

� FAST BITSTREAM CORRUPT,

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

� FAST UNKNOWN ERROR.

5.14.10 fastDecoderJ2kGetNextDecodedImage

fastStatus t fastDecoderJ2kGetNextDecodedImage (

fastDecoderJ2kHandle t handle,

fastDecoderJ2kReport t *report,

int *imagesLeft)

Returns the next decoded surface during batch processing.

Parameters:

handle[in] – JPEG2000 Decoder handle;

report[out] – structure, where measured duration of each decoding stage and some

other values (e.g., codeblock count, output image parameters) are

written to;

imagesLeft[out] – number of compressed images, which can be returned by successive

calls.

Notes:

The procedure stores the successive decoded image into the output linked buffer, if

there is at least one decoded image left after the previous calls.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

Page 158 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST EXECUTION FAILURE,

� FAST UNKNOWN ERROR.

5.14.11 fastDecoderJ2kDestroy

fastStatus t fastDecoderJ2kDestroy (

fastDecoderJ2kHandle t handle)

Destroys JPEG2000 Decoder.

Parameters:

handle[in] – pointer to JPEG2000 Decoder.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.15 Affine functions

5.15.1 fastAffineCreate

fastStatus t fastAffineCreate

(fastAffineHandle t *handle,

fastAffineType t affineType,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates Affine transformation component and returns associated handle.

Parameters:

Page 159 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[out] – pointer to created Affine component;

affineType[in] – type of affine transformation;

maxWidth[in] – maximum input image width in pixels;

maxHeight[in] – maximum input image height in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Notes:

Function fastAffineCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastAffineCreate will return

FAST INSUFFICIENT DEVICE MEMORY.

There are 5 currently supported affine transformations: Flip, Flop, Rotate 180, Ro-

tate 90 to left, Rotate 90 to right. All affine transformations are applicable for gray and

for color images. Rotation 90 left and Rotation 90 right change image dimensions: width

becomes height, height becomes width. So maxWidth and maxHeight of the following

component have to be properly adjusted.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

5.15.2 fastAffineGetAllocatedGpuMemorySize

fastStatus t fastAffineGetAllocatedGpuMemorySize

(fastAffineHandle t handle,

unsigned *allocatedGpuSizeInBytes)

Returns requested GPU memory for Affine transformation component.

Page 160 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Parameters:

handle[in] – Affine component handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for Affine component.

Statuses:

� FAST OK.

5.15.3 fastAffineChangeSrcBuffer

fastStatus t fastAffineChangeSrcBuffer

(fastAffineHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – Affine component handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.15.4 fastAffineTransform

fastStatus t fastAffineTransform

(fastAffineHandle t handle,

unsigned width,

unsigned height)

Page 161 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Performs current Affine transformation.

Parameters:

handle[in] – Affine component handle;

width[in] – image width in pixels;

height[in] – image height in pixels.

Notes:

If image size is greater than maximum value on creation, then error status

FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.15.5 fastAffineDestroy

fastStatus t fastAffineDestroy

(fastAffineHandle t handle)

Destroys Affine component handle.

Parameters:

handle[in] – Affine component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

Page 162 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.16 Crop functions

5.16.1 fastCropCreate

fastStatus t fastCropCreate

(fastCropHandle t *handle,

unsigned maxSrcWidth,

unsigned maxSrcHeight,

unsigned maxDstWidth,

unsigned maxDstHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates Crop component and returns associated handle.

Parameters:

handle[out] – pointer to created Crop component;

maxSrcWidth[in] – maximum input image width in pixels;

maxSrcHeight[in] – maximum input image height in pixels;

maxDstWidth[in] – maximum destination (cropped) image width in pixels;

maxDstHeight[in] – maximum destination (cropped) image height in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Notes:

Function fastCropCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastCropCreate will return

FAST INSUFFICIENT DEVICE MEMORY.

Parameter maxDstWidth has to be not more than maxSrcWidth, and maxDstHeight

has to be not more than maxSrcHeight. In other case fastCropCreate will return

FAST INVALID SIZE.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Page 163 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

5.16.2 fastCropGetAllocatedGpuMemorySize

fastStatus t fastCropGetAllocatedGpuMemorySize

(fastCropHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for Crop component.

Parameters:

handle[in] – Crop component handle;

allocatedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for Crop component.

Statuses:

� FAST OK.

5.16.3 fastCropChangeSrcBuffer

fastStatus t fastCropChangeSrcBuffer

(fastCropHandlet handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – Crop component handle;

srcBuffer[in] – new source buffer.

Notes:

Page 164 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.16.4 fastCropTransform

fastStatus t fastCropTransform

(fastCropHandle t handle,

unsigned width,

unsigned height,

unsigned leftTopCoordsX,

unsigned leftTopCoordsY,

unsigned croppedWidth,

unsigned croppedHeight)

Performs current Crop transformation.

Parameters:

handle[in] – Crop component handle;

width[in] – input image width in pixels;

height[in] – input image height in pixels;

leftTopCoordsX[in] – coordX in pixels for left top corner of cropped image in input

image;

leftTopCoordsY[in] – coordY in pixels for left top corner of cropped image in input

image;

croppedWidth[in] – cropped image width in pixels;

croppedHeight[in] – cropped image width in pixels.

Notes:

If size of input image or size of cropped image greater than maximum value on

creation error status FAST INVALID SIZE will be returned.

Page 165 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Also

leftTopCoordsX + croppedWidth

has to be not more than width and

leftTopCoordsY + croppedHeight

has to be not more than height. In other case function returns FAST INVALID SIZE

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.16.5 fastCropDestroy

fastStatus t fastCropDestroy

(fastCropHandle t handle)

Destroys Crop component handle.

Parameters:

handle[in] – Crop component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.17 Image Filter functions

Page 166 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.17.1 fastImageFilterCreate

fastStatus t fastImageFilterCreate

(fastImageFiltersHandle t *handle,

fastImageFilterType t filterType,

void *staticFilterParameters,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates ImageFilter component and returns associated handle.

Parameters:

handle[out] – pointer to created ImageFilter component;

filterType[in] – type of image filter;

staticFilterParameters[in] – static parameters for image filter;

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output

buffer of current component).

Notes:

Function fastImageFilterCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastImageFilterCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Next table shows structure type for staticFilterParameters depends on filter type. It

also shows can static parameter be null or not.

Page 167 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Filter Type Static Parameter Type Can be NULL

BASE COLOR CORRECTION fastBaseColorCorrection t yes

BAYER BLACK SHIFT fastBayerBlackShift t yes

BINNING fastBinning t yes

COLOR SATURATION {HSL,HSV} fastColorSaturation t yes

GAUSSIAN SHARPEN no yes

HSV LUT 3D fastHSVLut 3D t yes

LUT 8 8 fastLut 8 t yes

LUT 8 8 C fastLut 8 C t yes

LUT 8 {12,16} fastLut 8 16 t yes

LUT 8 16 BAYER fastLut 8 16 Bayer t yes

LUT 8 {12,16} C fastLut 8 16 C t yes

LUT 10 16 BAYER fastLut 10 16 Bayer t yes

LUT 12 8 fastLut 12 8 t yes

LUT 12 8 C fastLut 12 8 C t yes

LUT 12 {12,16} fastLut 12 t yes

LUT 12 16 BAYER fastLut 12 16 Bayer t yes

LUT 12 {12,16} C fastLut 12 C t yes

LUT 14 16 BAYER fastLut 14 16 Bayer t yes

Page 168 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Continued from previous page

Filter Type Static Parameter Type Can be NULL

LUT 16 8 fastLut 16 8 t yes

LUT 16 8 C fastLut 16 8 C t yes

LUT 16 16 fastLut 16 t yes

LUT 16 16 BAYER fastLut 16 16 Bayer t yes

LUT 16 16 C fastLut 16 C t yes

LUT 16 16 FR fastLut 16 FR t yes

LUT 16 16 FR BAYER fastLut 16 FR Bayer t yes

LUT 16 16 FR C fastLut 16 FR C t yes

RGB LUT 3D fastRGBLut 3D t yes

FFC fastFFC t yes

SAM fastSam t yes

SAM16 fastSam16 t yes

TONE CURVE fastToneCurve t yes

WHITE BALANCE fastWhiteBalance t yes

Filter FAST GAUSSIAN SHARPEN has no static parameters, so

staticFilterParameters has to be null.

Structure fastSam t is a static parameter for SAM filter.

typedef struct {

Page 169 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

unsigned char *blackShiftMatrix;

float *correctionMatrix;

} fastSam t

where

� blackShiftMatrix – pointer to black shift matrix (or B matrix);

� correctionMatrix – pointer to correction matrix (or A matrix).

Matrices have to be allocated by fastMalloc. Matrix’s height is equal to image height.

Matrix’s width is equal to image width snapped up to the nearest four fold value. After

image filter destroy matrices, they have to be deallocated by fastFree.

Structure fastBinning t is a static parameter for BINNING filter.

typedef struct{
fastBinningMode t mode;

unsigned factorX;

unsigned factorY;

} fastBinning t

where

� mode – type of binning operation;

� factorX – binning factor X;

� factorY – binning factor Y.

Structure fastFFC t is a static parameter for FFC filter.

typedef struct{
unsigned short divider;

unsigned short* correctionMatrix;

} fastFFC t

where

� divider – divider;

� correctionMatrix – pointer to sparsed correction matrix.

Matrix have to be allocated by fastMalloc. Matrix’s width and height is can be

calculated as (size / 4 + 1) where size is width and height of original image. After image

Page 170 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

filter destroy matrices, they have to be deallocated by fastFree.

Structure fastBayerBlackShift t is a static parameter for

BAYER BLACK SHIFT filter.

typedef struct{
float R;

float G;

float B;

fastBayerPattern t bayerPattern;

} fastBayerBlackShift t

where

� R – shift constant for R channel;

� G – shift constant for G channel;

� B – shift constant for B channel;

� bayerPattern – sbayer pattern.

Structure fastBaseColorCorrection t is a static parameter for

BASE COLOR CORRECTION filter.

typedef struct{
float matrix[12];

int whiteLevel[3];

} fastBaseColorCorrection t

where

� matrix – color correction matrix;

� whiteLevel – white level for RGB. If current pixel value greater than white value

then white value will be taken.

Structure fastWhiteBalance t is a static parameter for FAST WHITE BALANCE fil-

ter.

typedef struct{
float R;

float G1;

float G2;

float B;

Page 171 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastBayerPattern t bayerPattern;

} fastWhiteBalance t

where

� R,G1,G2,B – values of white balance matrix;

� bayerPattern – bayer pattern.

Structure fastColorSaturation t is a static parameter for

COLOR SATURATION {HSL, HSV} filter.

typedef struct{
float Lut[3][1024];

fastColorSaturationOperationType t operation[3];

fastColorSaturationChannelType t sourceChannel[3];

} fastColorSaturation t

where

� sourceChannel[3] – define channel associated with index. If sourceChannel[0] =

FAST CHANNEL H, then operation[0], Lut[0] contain information for H channel.

� Lut[3] – transformation Luts;

� operation[3] – transformation operation.

Structures fastLut {8,12,16} t, fastLut 8 16 t, fastLut {12,16} 8 t, fastLut ,16 FR t is

a static parameter for single table LUT filters.

typedef struct {
<lut value type> lut[<lut table size>];

}fastLut * t

where

� lut – LUT table;

� <lut value type> – type of element in LUT Table {unsigned char, unsigned short}.
� <lut table size> – number of element in LUT Table. See table 3.

Structures fastLut {8, 10, 12, 14} 16 Bayer t, fastLut 16 Bayer t, fastLut 16 FR Bayer t

is a static parameter for Bayer LUT filters. They have three LUT tables, one for each

color.

Page 172 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

typedef struct {
unsigned short lut R[<lut table size>];

unsigned short lut G[<lut table size>];

unsigned short lut B[<lut table size>];

fastBayerPattern t pattern;

}fastLut * Bayer t

where

� lut R – LUT table for Red channel of Bayer pattern;

� lut G – LUT table for Green channel of Bayer pattern;

� lut B – LUT table for Blue channel of Bayer pattern;

� <lut table size> – number of element in LUT Table. See table 3.

Structures fastLut {8,12,16} C t, fastLut 8 16 C t, fastLut {12,16} 8 C t, fastLut ,16 FR C t

is a static parameter for color table LUT filters. They have three LUT tables, one for

each color.

typedef struct {
<lut value type> lut R[<lut table size>];

<lut value type> lut G[<lut table size>];

<lut value type> lut B[<lut table size>];

}fastLut * C t

where

� lut R – LUT table for Red channel;

� lut G – LUT table for Green channel

� lut B – LUT table for Blue channel

� <lut value type> – type of element in LUT Table {unsigned char, unsigned short}.
� <lut table size> – number of element in LUT Table. See table 3.

Structure fastRGBLut 3D t is a static parameter for FAST RGB LUT 3D filter.

typedef struct {
fastRGB16 t *lut;

unsigned size1D;

}fastRGBLut 3D t

Page 173 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

where

� size1D – linear cube size;

� lut – pointer to 3D LUT.

Ordering of elements in 3D LUT is the opposite to the typical in-memory order of

multi-dimensional tables. An equivalent index would be

r + N × g + N ×N × b,

where r, g, b are the Red, Green, and Blue indices in the range from 0 to N–1.

Memory for 3D LUT have to be allocated by fastMalloc. After image filter destroy

matrices, they have to be deallocated by fastFree.

Structure fastHSVLut 3D t is a static parameter for FAST HSV LUT 3D filter.

typedef struct{
unsigned int dimH;

unsigned int dimS;

unsigned int dimV;

fastColorSaturationOperationType t operationH;

fastColorSaturationOperationType t operationS;

fastColorSaturationOperationType t operationV;

fastHSVfloat t *Lut;

} fastHsvLut3D t

where

� dimH – number of elements per H axis;

� dimS – number of elements per S axis;

� dimV – number of elements per V axis. To define 2D LUT, dimV has to be 1.

� operationH – transformation operation for H channel;

� operationS – transformation operation for S channel;

� operationV – transformation operation for V channel;

� lut – pointer to 2D/3D LUT.

Ordering elements in 3D LUT is the opposite to the typical in-memory order of

multi-dimensional tables. An equivalent index would be

V + dimV× H + dimV× dimH× S.

Memory for 3D LUT has to be allocated by fastMalloc. After image filter destroy

Page 174 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

matrices, they have to be deallocated by fastFree.

Statuses:

� FAST OK;

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED SURFACE.

5.17.2 fastImageFiltersGetAllocatedGpuMemorySize

fastStatus t fastImageFiltersGetAllocatedGpuMemorySize

(fastImageFiltersHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for ImageFilter component.

Parameters:

handle[in] – ImageFilter handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for ImageFilter component.

Statuses:

� FAST OK.

5.17.3 fastImageFiltersChangeSrcBuffer

fastStatus t fastImageFiltersChangeSrcBuffer

(fastImageFiltersHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

Page 175 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – Image Filter handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.17.4 fastImageFiltersTransform

fastStatus t fastImageFiltersTransform

(fastImageFiltersHandle t handle,

void *filterParameters,

unsigned width,

unsigned height)

Performs current ImageFilter transformation.

Parameters:

handle[in] – ImageFilter component handle;

filterParameters[in] – filter parameters for current image;

width[in] – image width in pixels;

height[in] – image height in pixels.

Notes:

If image size is greater than maximum value on creation error status

FAST INVALID SIZE will be returned.

Pointer filterParameters can point to the following structures:

� fastGaussianFilter t,

� fastBaseColorCorrection t,

� fastWhiteBalance t,

� fastToneCurve t,

Page 176 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� fastColorSaturation t,

� fastSam t,

� fastSam16 t

and to all LUT structures.

Structure fastGaussianFilter is dynamic parameter for FAST GAUSSIAN SHARPEN

filter.

typedef struct{
double sigma;

} fastGaussianFilter t

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.17.5 FastImageFiltersDestroy

fastStatus t fastImageFiltersDestroy

(fastImageFiltersHandle t handle)

Destroys ImageFilter component handle.

Parameters:

handle[in] – ImageFilter component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

Page 177 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.18 Resize functions

5.18.1 fastResizerCreate

fastStatus t fastResizerCreate

(fastResizerHandle t *handle,

unsigned maxSrcWidth,

unsigned maxSrcHeight,

unsigned maxDstWidth,

unsigned maxDstHeight,

double maxScaleFactor,

float shiftX,

float shiftY,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates Resize and returns associated handle.

Parameters:

handle[out] – pointer to created Resizer component;

maxSrcWidth [in] – maximum input image width in pixels;

maxSrcHeight[in] – maximum input image height in pixels;

maxDstWidth[in] – maximum destination (cropped) image width in pixels;

maxDstHeight[in] – maximum destination (cropped) image height in pixels;

maxScaleFactor[in] – maximum scale factor (relation between source and destination

dimensions);

shiftX[in] – shift between source and destination grids by x coordinate. Cur-

rently ignored, should be 0,0;

shiftY[in] – shift between source and destination grids by y coordinate. Cur-

rently ignored, should be 0,0;

Page 178 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer to created Resizer component;

handle[out] – pointer for linked buffer for the next component (output buffer

of current component).

Notes:

Function fastResizeCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastResizeCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Parameter maxDstWidth has to be not more than maxSrcWidth, and

maxDstHeight has to be not more than maxSrcHeight. In other case fastResizeCre-

ate returns FAST INVALID SIZE. Also maxSrcWidth/maxDstWidth and maxSrcHeight/

maxDstHeight have to be less or equal to maxScaleFactor. In other cases fastResizeCreate

returns FAST INVALID SIZE.

If resize component is used only for upscaling maxScaleFactor should be set at any

value greater than one.

Min values for maxDstWidth and maxDstHeight are 32.

Max value for maxScaleFactor is 40.

Max values for maxSrcWidth and maxSrcHeight are 65536.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

5.18.2 fastResizerGetAllocatedGpuMemorySize

fastStatus t fastResizerGetAllocatedGpuMemorySize

(fastResizerHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for Resizer component.

Page 179 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Parameters:

handle[in] – Resizer handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for Resizer component.

Statuses:

� FAST OK.

5.18.3 fastResizerChangeSrcBuffer

fastStatus t fastResizerChangeSrcBuffer

(fastResizerHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer))

Sets new source buffer.

Parameters:

handle[in] – Resizer handle;

srcBuffer [in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.18.4 fastResizerTransform

fastStatus t fastResizerTransform

(fastResizerHandle t handle,

fastResizeType t resizeType,

unsigned width,

unsigned height,

Page 180 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

unsigned resizedWidth,

unsigned *resizedHeight)

Resizes current image with preserving aspect ratio.

Parameters:

handle[in] – Resizer handle;

resizeType[in] – type of resize. Currently only FAST LANCZOS resize is sup-

ported.

width[in] – input image width in pixels;

height[in] – input image height in pixels;

resizedWidth[in] – width of resized image in pixels;

resizedHeight[out] – height of resized image in pixels.

Notes:

If size of input image or size of resized image are greater than maximum value on

creation error status FAST INVALID SIZE will be returned.

Height of resized image is calculated by the function and then customer application

gets it in resizedHeight.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.18.5 fastResizerTransformStretch

fastStatus t fastResizerTransformStretch

(fastResizerHandle t handle,

fastResizeType t resizeType,

unsigned width,

Page 181 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

unsigned height,

unsigned resizedWidth,

unsigned resizedHeight)

Resizes current image without preserving aspect ratio.

Parameters:

handle[in] – Resizer handle;

resizeType[in] – type of resize. Currently only FAST LANCZOS resize is sup-

ported.

width[in] – input image width in pixels;

height[in] – input image height in pixels;

resizedWidth[in] – width of resized image in pixels;

resizedHeight[in] – height of resized image in pixels.

Notes:

If size of input image or size of resized image are greater than maximum value on

creation error status FAST INVALID SIZE will be returned.

Function allows upscale one dimension and downscale other dimension.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.18.6 fastResizerDestroy

fastStatus t fastResizerDestroy

(fastResizerHandle t handle)

Destroys Resizer component.

Page 182 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Parameters:

handle[in] – Resizer component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.19 HDR Builder functions

5.19.1 fastHdrBuilderCreate

fastStatus t fastHdrBuilderCreate

(fastHDRBuilderHandle t *handle,

fastHDRBuilderFormat t hdrFormat,

void* staticParameters,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates HDR Builder and returns associated handle.

Parameters:

handle[out] – pointer to created HDR Builder component;

hdrFormat [in] – ;

staticParameters[in] – pointer to structure with additional parameters. List of sup-

ported structures: fastHdrGray 3x12 t;

maxWidth[in] – maximum width of image in pixels

maxHeight[in] – maximum height of image in pixels;

Page 183 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer to created Resizer component;

handle[out] – pointer for linked buffer for the next component (output buffer

of current component).

Notes:

Function fastHdrBuilderCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastHdrBuilderCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

5.19.2 fastHdrBuilderGetAllocatedGpuMemorySize

fastStatus t fastHdrBuilderGetAllocatedGpuMemorySize

(fastHDRBuilderHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for HDR Builder component.

Parameters:

handle[in] – HDR Builder handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for HDR Builder component.

Statuses:

� FAST OK.

Page 184 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.19.3 fastHdrBuilderChangeSrcBuffer

fastStatus t fastHdrBuilderChangeSrcBuffer

(fastHDRBuilderHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer))

Sets new source buffer.

Parameters:

handle[in] – HDR Builder handle;

srcBuffer [in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.19.4 fastHdrBuilderFill

fastStatus t fastHdrBuilderFill

(fastHDRBuilderHandle t handle,

fastHDRImageExposure t hdrImageExposure)

Set exposure buffer according parameters.

Parameters:

handle[in] – HDR Builder handle;

hdrImageExposure[in] – exposure type. Currently supports: HDR EXPOSURE X1,

HDR EXPOSURE X4, HDR EXPOSURE X16.

Notes:

If size of input image or size of resized image are greater than maximum value on

creation error status FAST INVALID SIZE will be returned.

Height of resized image is calculated by the function and then customer application

Page 185 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

gets it in resizedHeight.

Statuses:

� FAST OK,

� FAST INVALID VALUE.

5.19.5 fastHdrBuilderFillAndTransform

fastStatus t fastHdrBuilderFillAndTransform

(fastHDRBuilderHandle t handle,

fastHDRImageExposure t hdrImageExposure,

void* dynamicParameters,

unsigned width,

unsigned height)

Fill the last exposure and transform image.

Parameters:

handle[in] – HDR Builder handle;

hdrImageExposure[in] – exposure type. Currently supports: HDR EXPOSURE X1,

HDR EXPOSURE X4, HDR EXPOSURE X16.

width[in] – input image width in pixels;

height[in] – input image height in pixels.

Notes:

If size of input image or size of resized image are greater than maximum value on

creation error status FAST INVALID SIZE will be returned.

Function allows upscale one dimension and downscale other dimension.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE.

Page 186 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.19.6 fastHdrBuilderDestroy

fastStatus t fastHdrBuilderDestroy

(fastHDRBuilderHandle t handle)

Destroys HDR Builder component.

Parameters:

handle[in] – HDR Builder component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.20 Bayer Splitter functions

5.20.1 fastBayerSplitterCreate

fastStatus t fastBayerSplitterCreate

(fastBayerSplitterHandle t *handle,

unsigned maxSrcWidth,

unsigned maxSrcHeight,

unsigned *maxDstWidth,

unsigned *maxDstHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates BayerSplitter component and returns associated handle.

Parameters:

Page 187 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[out] – pointer to created BayerSplitter component;

maxSrcWidth[in] – maximum input image width in pixels;

maxSrcHeight[in] – maximum input image height in pixels;

maxDstWidth[out] – maximum width of splitted Bayer image in pixels;

maxDstHeight[out] – maximum height of splitted Bayer image in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer

of current component).

Notes:

Function fastBayerSplitterCreate allocates all necessary buffers in GPU memory.

So in case GPU does not have enough free memory, fastBayerSplitterCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Output parameters maxDstWidth and maxDstHeight are used by next pipeline com-

ponent to determine its maxWidth and maxHeight. Intended next component is JPEG

Encoder.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

5.20.2 fastBayerSplitterGetAllocatedGpuMemorySize

fastStatus t fastBayerSplitterGetAllocatedGpuMemorySize

(fastBayerSplitterHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for BayerSplitter component.

Parameters:

Page 188 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – BayerSplitter component handle;

equestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for BayerSplitter component.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.20.3 fastBayerSplitterChangeSrcBuffer

fastStatus t fastBayerSplitterChangeSrcBuffer

(fastBayerSplitterHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – BayerSplitter component handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.20.4 fastBayerSplitterSplit

fastStatus t fastBayerSplitterSplit

(fastBayerSplitterHandle t handle,

unsigned srcWidth,

unsigned srcHeight,

unsigned *dstWidth,

Page 189 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

unsigned *dstHeight)

Function splits Bayer image on four planes.

Parameters:

handle[in] – BayerSplitter component handle;

srcWidth[in] – maximum input image width in pixels;

srcHeight[in] – maximum input image height in pixels;

dstWidth[out] – width of splitted Bayer image in pixels;

dstHeight[out] – height of splitted Bayer image in pixels.

Notes:

If image size is greater than maximum value on creation error status,

FAST INVALID SIZE will be returned.

Output parameters dstWidth and dstHeight are passed to the next component.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.20.5 fastBayerSplitterDestroy

fastStatus t fastBayerSplitterDestroy

(fastBayerSplitterHandle t handle)

Destroys BayerSplitter component.

Parameters:

handle[in] – BayerSplitter component handle.

Notes:

Procedure frees all device memory.

Page 190 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.21 Bayer Merger functions

5.21.1 fastBayerMergerCreate

fastStatus t fastBayerMergerCreate

(fastBayerMergerHandle t *handle,

unsigned maxDstWidth,

unsigned maxDstHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates BayerMerger component and returns associated handle.

Parameters:

handle[out] – pointer to created BayerMerger component;

maxDstWidth[in] – maximum width of restored Bayer image in pixels;

maxDstHeight[in] – maximum height of restored Bayer image in pixels;

srcBuffer[in] – linked buffer from the previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer

of current component).

Notes:

Function fastBayerMergerCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastBayerMergerCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

The function is different from other create functions because it takes maximum size

of output image. BayerMerger takes splitted Bayer image and transforms it to normal

Bayer image. It is more convenient for user to operate with size of restored (output) than

splitted (input) image.

Page 191 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE.

5.21.2 fastBayerMergerGetAllocatedGpuMemorySize

fastStatus t fastBayerMergerGetAllocatedGpuMemorySize

(fastBayerMergerHandle t handle,

unsigned *requestedGpuSizeInBytes)

Restores Bayer image from splitted image.

Parameters:

handle[in] – BayerMerger component handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for BayerMerger component.

Statuses:

� FAST OK.

5.21.3 fastBayerMergerChangeSrcBuffer

fastStatus t fastBayerMergerChangeSrcBuffer

( fastBayerMergerHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – BayerMerger component handle;

srcBuffer[in] – new source buffer.

Notes:

Page 192 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.21.4 fastBayerMergerMerge

fastStatus t fastBayerMergerMerge

(fastBayerMergerHandle t handle,

unsigned width,

unsigned height)

Returns requested GPU memory for BayerMerger component.

Parameters:

handle[in] – BayerMerger component handle;

width[in] – restored (original) image width in pixels;

height[in] – restored (original) image height in pixels.

Notes:

If image size is greater than maximum value on creation error status

FAST INVALID SIZE will be returned.

Restored Image width and height are taken from EXIF section, defined by

SplitterExif t structure in ExifInfo.hpp. Section is parsed by ParseSplitterExif function from

ExifInfo.hpp.

Statuses:

� FAST OK.

5.21.5 fastBayerMergerDestroy

fastStatus t fastBayerMergerDestroy

(fastBayerMergerHandle t handle)

Destroys BayerMerger component.

Page 193 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Parameters:

handle[in] – BayerMerger component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.22 Timer functions

5.22.1 fastGpuTimerCreate

fastStatus t fastGpuTimerCreate

(fastGpuTimerHandle t *handle)

Creates Timer and returns associated handle.

Parameters:

handle[out] – pointer to created Timer handle.

Notes:

Allocates necessary buffers in GPU memory. In case GPU does not have enough free

memory returns FAST INSUFFICIENT DEVICE MEMORY.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.22.2 fastGpuTimerStart

fastStatus t fastGpuTimerStart

(fastGpuTimerHandle t handle)

Page 194 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Inserts start event into GPU stream.

Parameters:

handle[in] – Timer handle pointer.

Notes:

Inserts start event into GPU stream.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.22.3 fastGpuTimerStop

fastStatus t fastGpuTimerStop

(fastGpuTimerHandle t handle)

Inserts stop event into GPU stream.

Parameters:

handle[in] – Timer handle pointer.

Notes:

Inserts stop event into GPU stream.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.22.4 fastGpuTimerGetTime

fastStatus t fastGpuTimerGetTime

(fastGpuTimerHandle t *handle,

float *elapsed)

Page 195 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Synchronizes CPU thread with stop event and calculates time elapsed between start

and stop events.

Parameters:

handle[in] – Timer handle pointer;

elapsed[out] – time elapsed.

Notes:

Synchronizes CPU thread with stop event and calculates time elapsed between start

and stop events.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.22.5 fastGpuTimerDestroy

fastStatus t fastDestroyGpuTimerHandle

(fastGpuTimerHandle t handle)

Destroys Timer handle.

Parameters:

handle[in] – pointer to Timer handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

5.23 Mux functions

Page 196 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.23.1 fastMuxCreate

fastStatus t fastMuxCreate

(fastMuxHandle t *handle,

fastDeviceSurfaceBufferHandle t* srcBuffers,

unsigned numberOfInputs,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates Mux and returns associated handle.

Parameters:

handle[out] – pointer to created Mux handle;

srcBuffers[in] – array of linked buffer from previous component;

numberOfInputs[in] – element count in srcBuffers;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer

of current component).

Notes:

Allocates necessary buffers in GPU memory. In case GPU does not have enough free

memory returns FAST INSUFFICIENT DEVICE MEMORY.

All input buffers have to be same size and type, else function returns

FAST INVALID FORMAT.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID FORMAT.

5.23.2 fastMuxSelect

fastStatus t fastMuxSelect

(fastMuxHandle t handle,

unsigned srcBufferIndex)

Selects specified input and passes it to the output.

Parameters:

Page 197 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – Mux handle;

srcBufferIndex[in] – index of selected input.

Notes:

Index is zero-based numbering. It has to be less than numberOfInputs in Create

function, else function returns FAST INVALID SIZE.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INVALID SIZE.

5.23.3 fastMuxDestroy

fastStatus t fastMuxDestroy

(fastMuxHandle t handle)

Destroys Mux.

Parameters:

handle[in] – Mux handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.24 SDI import and export

5.24.1 fastSDIImportFromHostCreate/fastSDIImportFromDeviceCreate

fastStatus t fastSDIImportFromHostCreate (

fastSDIImportFromHostHandle t *handle,

fastSDIFormat t sdiFmt,

unsigned maxWidth,

Page 198 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t *dstBuffer)

fastStatus t fastSDIImportFromDeviceCreate (

fastSDIImportFromDeviceHandle t *handle,

fastSDIFormat t sdiFmt,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates SDI Import component and returns associated handle.

Parameters:

handle[out] – pointer to created SDI Import handle;

sdiFmt[in] – SDI format;

maxWidth[in] – maximum width of image in pixels;

maxHeight[in] – maximum height of image in pixels;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Notes:

Allocates necessary buffers in GPU memory. In case GPU does not have enough free

memory returns FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format, then the function will return

FAST UNSUPPORTED SURFACE.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID FORMAT,

� FAST UNSUPPORTED SURFACE.

5.24.2 fastSDIExportToHostCreate/fastSDIExportToDeviceCreate

fastStatus t fastSDIExportToHostCreate (

fastSDIExportToHostHandle t *handle,

Page 199 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastSDIFormat t sdiFmt,

void *staticParameters,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer)

fastStatus t fastSDIExportToDeviceCreate (

fastSDIExportToDeviceHandle t *handle,

fastSDIFormat t sdiFmt,

void *staticParameters,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer)

Creates SDI Export component and returns associated handle.

Parameters:

handle[out] – pointer to created SDI Import handle;

sdiFmt[in] – index of selected input;

staticParameters[in] – pointer to structure with additional parameters. List of sup-

ported structures: fastSDIRGBAExport t, fastSDIYCbCrExport t;

maxWidth[in] – maximum width of image in pixels;

maxHeight[in] – maximum height of image in pixels;

srcBuffer[in] – linked buffer from previous component.

Notes:

Allocates necessary buffers in GPU memory. In case GPU does not have enough free

memory returns FAST INSUFFICIENT DEVICE MEMORY.

If srcBuffer format is incompatible with selected sdiFmt, then function returns

FAST INVALID FORMAT.

Srtucture fastSDIRGBAExport t defines padding for alpha channel of RGBA pixel.

typedef struct{
fastRGBAAlphaPadding t padding;

fastSDIRGBAExport t}

Page 200 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

where

� padding – defines padding for alpha channel: zero or FF.

Srtucture fastSDIYCbCrExport t overrides source bits depth.

typedef struct{
unsigned overrideSourceBitsPerChannel;

} fastSDIYCbCrExport t

where

� overrideSourceBitsPerChannel – new bits depth.

Used in case of data bits depth is not according surface format. For example, in 12

bits format stored 10 bits data.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID FORMAT.

5.24.3 fastSDIImportFromHostGetAllocatedGpuMemorySize

fastStatus t fastSDIImportFromHostGetAllocatedGpuMemorySize

(fastSDIImportFromHostHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory size for SDI Import component.

Parameters:

handle[in] – SDI Import component handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for SDI Import component.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

Page 201 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.24.4 fastSDIImportFromDeviceGetAllocatedGpuMemorySize

fastStatus t fastSDIImportFromDeviceGetAllocatedGpuMemorySize (

fastSDIImportFromDeviceHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory size for SDI Import component.

Parameters:

handle[in] – SDI Import component handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for SDI Import component.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.24.5 fastSDIExportToHostGetAllocatedGpuMemorySize

fastStatus t fastSDIExportToHostGetAllocatedGpuMemorySize (

fastSDIExportToHostHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory size for SDI Export component.

Parameters:

handle[in] – SDI Export component handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for SDI Export component.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

Page 202 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.24.6 fastSDIExportToDeviceGetAllocatedGpuMemorySize

fastStatus t fastSDIExportToDeviceGetAllocatedGpuMemorySize (

fastSDIExportToDeviceHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory size for SDI Export component.

Parameters:

handle[in] – SDI Export component handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for SDI Export component.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.24.7 fastSDIImportFromHostCopy/fastSDIImportFromDeviceCopy

fastStatus t fastSDIImportFromHostCopy (

fastSDIImportFromHostHandle t handle,

void* h src,

unsigned width,

unsigned height)

fastStatus t fastSDIImportFromDeviceCopy (

fastSDIImportFromDeviceHandle t handle,

void* d src,

unsigned width,

unsigned height)

Loads SDI formatted image to the pipeline.

Parameters:

Page 203 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – SDI Import component handle;

h src[in] – SDI formatted image located on host;

d src[in] – SDI formatted image located on device;

width[in] – image width in pixels;

height[in] – image height in pixels.

Notes:

Buffer h src has to be allocated by fastMalloc. Buffer allocated by original malloc also

can be used, but copy speed will degrade.

Buffer d src has to be allocated in Device memory by cudaMalloc. If size of d dst is

not enough, then function will fail with segmentation fault.

If image size is greater than maximum value on creation, then error status

FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.24.8 fastSDIImportFromHostCopyPacked/fastSDIImportFromDeviceCopyPacked

fastStatus t fastSDIImportFromHostCopyPacked (

fastSDIImportFromHostHandle t handle,

void* h src,

unsigned pitch, unsigned width,

unsigned height)

fastStatus t fastSDIImportFromDeviceCopyPacked (

fastSDIImportFromDeviceHandle t handle,

void* d src,

unsigned pitch, unsigned width,

unsigned height)

Page 204 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Loads packed SDI image to the pipeline. Supported formats are 422 8 CbYCrY,

422 8 CrYCbY, 422 10 CbYCrY PACKED.

Parameters:

handle[in] – SDI Import component handle;

h src[in] – SDI formatted image located on host;

d src[in] – SDI formatted image located on device;

pitch[in] – image row pitch in bytes;

width[in] – image width in pixels;

height[in] – image height in pixels.

Notes:

Buffer h src has to be allocated by fastMalloc. Buffer allocated by original malloc also

can be used, but copy speed will degrade.

Buffer d src has to be allocated in Device memory by cudaMalloc. If size of d dst is

not enough, then function will fail with segmentation fault.

If image size is greater than maximum value on creation, then error status

FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.24.9 fastSDIExportToHostCopy/fastSDIExportToDeviceCopy

fastStatus t fastSDIExportToHostCopy (

fastSDIExportToHostHandlet handle,

void* h dst,

unsigned *width,

unsigned *height)

Page 205 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastStatus t fastSDIExportToDeviceCopy (

fastSDIExportToDeviceHandle t handle,

void* d dst,

unsigned *width,

unsigned *height)

Exports SDI formatted image from pipeline to host memory.

Parameters:

handle[in] – SDI Export component handle;

h dst[out] – host buffer for exported SDI formatted image;

d dst[out] – device buffer for exported SDI formatted image;

width[out] – image width in pixels;

height[out] – image height in pixels.

Notes:

Buffer size in Bytes can be calculated by GetSDIBufferSize function from HelperSDI.hpp

(part of SDIConverterSample application).

Buffer h dst has to be allocated by fastMalloc. Buffer allocated by original malloc

also can be used, but copy speed will degrade.

Buffer d dst has to be allocated in Device memory by cudaMalloc. If size of d dst is

not enough, then function will fail with segmentation fault.

User has to estimate width and height of export image and allocate buffer according

to these values. Function returns real width and height.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.24.10 fastSDIImportToHostCopy3/fastSDIImportToDeviceCopy3

fastStatus t fastSDIImportFromHostCopy3 (

fastSDIImportFromHostHandle t handle,

Page 206 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastChannelDescription t *srcY,

fastChannelDescription t *srcU,

fastChannelDescription t *srcV)

fastStatus t fastSDIImportFromDeviceCopy3 (

fastSDIImportFromDeviceHandle t handle,

fastChannelDescription t *srcY,

fastChannelDescription t *srcU,

fastChannelDescription t *srcV)

Loads YCbCr planar or mixed image from three separate buffers to the pipeline. All

supported formats are listed in Table 8.

Parameters:

handle[in] – SDI Import component handle;

srcY[in] – Y plane of image;

srcU[in] – Cb plane or mixed Cb/Cr image;

srcV[in] – Cr plane of image or null for mixed image.

Notes:

Srtucture fastChannelDescription t defines size of plane.

typedef struct{
unsigned char *data;

unsigned width;

unsigned pitch;

unsigned height;

} fastChannelDescriptiont

where

� data – plane buffer. It has to be allocated by fastMalloc for host version and

cudaMalloc for device version;

� width – plane width;

� height – plane height;

� pitch – size of image raw in byte. Value alligned by 4.

Page 207 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

If even one image plane has incorrect size , then error status FAST INVALID SIZE will

be returned.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST INVALID SIZE.

5.24.11 fastSDIExportToHostCopy3/fastSDIExportToDeviceCopy3

fastStatus t fastSDIExportToHostCopy3 (

fastSDIExportToHostHandle t handle,

fastChannelDescription t *dstY,

fastChannelDescription t *dstU,

fastChannelDescription t *dstV)

fastStatus t fastSDIExportToDeviceCopy3 (

fastSDIExportToDeviceHandle t handle,

fastChannelDescription t *dstY,

fastChannelDescription t *dstU,

fastChannelDescription t *dstV)

Loads YCbCr planar or mixed image from three separate buffers to the pipeline. All

supported formats are listed in Table 8

Parameters:

handle[in] – SDI Export component handle;

srcY[in] – Y plane of image;

srcU[in] – Cb plane or mixed Cb/Cr image;

srcV[in] – Cr plane of image or null for mixed image.

Notes:

If even one image plane has incorrect size , then error status FAST INVALID SIZE

will be returned.

Page 208 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST INVALID SIZE.

5.24.12 fastSDIImportFromHostDestroy/fastSDIImportFromDeviceDestroy

fastStatus t fastSDIImportFromHostDestroy (

fastSDIImportFromHostHandle t handle)

fastStatus t fastSDIImportFromDeviceDestroy (

fastSDIImportFromDeviceHandle t handle)

Destroys SDI Import component.

Parameters:

handle[in] – SDI Import component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.24.13 fastSDIExportToHostDestroy/fastSDIExportToDeviceDestroy

fastStatus t fastSDIExportToHostDestroy (

fastSDIExportToHostHandle t handle)

fastStatus t fastSDIExportToDeviceDestroy (

fastSDIExportToDeviceHandle t handle)

Destroys SDI Export component.

Parameters:

Page 209 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – SDI Export component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.25 RAW import

5.25.1 fastRawImportFromHostCreate/fastRawImportFromDeviceCreate

fastStatus t fastRawImportFromHostCreate (

fastRawUnpackerHandle t *handle,

fastRawFormat t rawFmt,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t *dstBuffer)

fastStatus t fastRawImportFromDeviceCreate (

fastRawUnpackerHandle t *handle,

fastRawFormat t rawFmt,

fastSurfaceFormat t surfaceFmt,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates RAW Import component and returns associated handle.

Parameters:

Page 210 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[out] – pointer to created RAW Import handle;

rawFmt[in] – RAW format;

surfaceFmt[in] – Target surface format;

maxWidth[in] – maximum width of image in pixels;

maxHeight[in] – maximum height of image in pixels;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Notes:

Allocates necessary buffers in GPU memory. In case GPU does not have enough free

memory returns FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format, then the function will return

FAST UNSUPPORTED SURFACE.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID FORMAT,

� FAST UNSUPPORTED SURFACE.

5.25.2 fastRAWImportFromHostGetAllocatedGpuMemorySize

fastStatus t fastRawImportFromHostGetAllocatedGpuMemorySize (

fastRawImportFromHostHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory size for RAW Import component.

Parameters:

handle[in] – RAW Import component handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for RAW Import component.

Statuses:

Page 211 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST OK,

� FAST INVALID HANDLE.

5.25.3 fastRAWImportFromDeviceGetAllocatedGpuMemorySize

fastStatus t fastRAWImportFromDeviceGetAllocatedGpuMemorySize (

fastRawImportFromDeviceHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory size for RAW Import component.

Parameters:

handle[in] – RAW Import component handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for RAW Import component.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.25.4 fastRawImportFromHostDecode/fastRawImportFromDeviceDecode

fastStatus t fastRawImportFromHostDecode (

fastRawUnpackerHandle t handle,

void* src,

unsigned srcPitch,

unsigned *width,

unsigned *height)

fastStatus t fastRawImportFromDeviceDecode (

fastRawUnpackerHandle t handle,

void* src,

unsigned srcPitch,

unsigned *width,

unsigned *height)

Page 212 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Loads Raw image to the pipeline.

Parameters:

handle[in] – Raw component handle;

src[out] – host/device buffer with imported Raw image;

srcPitch[in] – pitch in byte of imported Raw image;

width[out] – image width in pixels;

height[out] – image height in pixels.

Notes:

Buffer src for ImportFromHost has to be allocated by fastMalloc. Buffer allocated by

original malloc also can be used, but copy speed will degrade.

Buffer src for ImportFromDevice has to be allocated in Device memory by cudaMalloc.

If size of src is not enough, then function will fail with segmentation fault.

User has to estimate width and height of export image and allocate buffer according

to these values. Function returns real width and height.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR.

5.25.5 fastRawImportFromHostDestroy/fastRawImportFromDeviceDestroy

fastStatus t fastRawImportFromHostDestroy (

fastRawImportFromHostHandle t handle)

fastStatus t fastRawImportFromDeviceDestroy(

fastRawImportFromDeviceHandle t handle)

Destroys Raw Import component.

Parameters:

handle[in] – Raw Import component handle.

Notes:

Page 213 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.26 Surface converter

5.26.1 fastSurfaceConverterCreate

fastStatus t fastSurfaceConverterCreate (

fastSurfaceConverterHandle t *handle,

fastSurfaceConverter t surfaceConverterType,

void *staticSurfaceConverterParameters,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates Surface Converter and returns associated handle.

Parameters:

handle[out] – pointer to created Surface Converter handle;

surfaceConverterType[in] – surface converter type;

staticFilterParameters[in] – static parameters for image filter;

maxWidth[in] – maximum image width in pixels;

maxHeight[in] – maximum image height in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output

buffer of current component).

Notes:

Function fastSurfaceConverterCreate allocates all necessary buffers in GPU memory.

So in case GPU does not have enough free memory, then fastSurfaceConverterCreate re-

turns FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

Page 214 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

FAST UNSUPPORTED SURFACE.

List of supported structures for staticFilterParameters:

� fastBitDepthConverter t,

� fastSelectChannel t,

� fastRgbToGrayscale t,

� fastBayerPatternParam t.

Structure fastBitDepthConverter t is a static parameter for FAST BIT DEPTH filter.

typedef struct{
unsigned overrideSourceBitsPerChannel;

bool isOverrideSourceBitsPerChannel;

unsigned targetBitsPerChannel;

} fastBitDepthConverter t

where

� overrideSourceBitsPerChannel – overrided bit depth of source surface;

� isOverrideSourceBitsPerChannel – activate source bit depth overriding;

� targetBitsPerChannel – bit depth of destination surface.

Structure fastSelectChannel t is a static parameter for FAST SELECT CHANNEL

filter.

typedef struct{
fastChannelType t channel;

} fastSelectChannel t

where

� channel – selected RGB channel.

Structure fastRgbToGrayscale t is a static parameter for FAST RGB TO GRAYSCALE

filter.

typedef struct{
float coefficientR;

float coefficientG;

float coefficientB;

} fastRgbToGrayscale t

Page 215 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

where

� coefficientR – weight for R channel;

� coefficientG – weight for G channel;

� coefficientB – weight for B channel.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED SURFACE.

5.26.2 fastSurfaceConverterGetAllocatedGpuMemorySize

fastStatus t fastSurfaceConverterGetAllocatedGpuMemorySize (

fastSurfaceConverterHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for Surface Converter component.

Parameters:

handle[in] – Surface Converter handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for Surface Converter component.

Statuses:

� FAST OK.

5.26.3 fastSurfaceConverterChangeSrcBuffer

fastStatus t fastSurfaceConverterChangeSrcBuffer (

fastSurfaceConverterHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Page 216 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Sets new source buffer.

Parameters:

handle[in] – Surface Converter handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.26.4 fastSurfaceConverterTransform

fastStatus t fastSurfaceConverterTransform (

fastSurfaceConverterHandle t handle,

void *surfaceConverterParameters,

unsigned width,

unsigned height)

Performs current Surface Converter transformation.

Parameters:

handle[in] – Surface Converter handle;

surfaceConverterParameters[in] – parameters for current image;

width[in] – image width in pixels;

height[in] – image height in pixels.

Notes:

If image size is greater than maximum value on creation error status

FAST INVALID SIZE will be returned.

Pointer filterParameters can point on the following structures:

� fastBitDepthConverter t,

Page 217 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� fastSelectChannel t,

� fastRgbToGrayscale t.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.26.5 fastSurfaceConverterDestroy

fastStatus t fastSurfaceConverterDestroy (

fastSurfaceConverterHandle t handle)

Destroys Surface Converter component handle.

Parameters:

handle[in] – Surface Converter component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR.

Page 218 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.27 Histogram functions

5.27.1 fastHistogramCreate

fastStatus t fastHistogramsCreate

(fastHistogramsHandle t *handle,

fastHistogramType t histogramType,

void *staticParameters,

unsigned int bins,

unsigned int maxWidth,

unsigned int maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer)

Creates Histogram and returns associated handle.

Parameters:

handle[out] – pointer to created Histogram component;

histogramType[in] – histogram type;

staticParameters[in] – pointer to static parameters;

bins[in] – number of bins in histogram. Number is power of two;

maxWidth[in] – maximum input image width in pixels;

maxHeight[in] – maximum input image height in pixels;

srcBuffer[in] – linked buffer from previous component.

Notes:

Function fastHistogramCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastHistogramCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

There is no static parameter for FAST HISTOGRAM COMMON type. Static pa-

rameter has to be null.

Structure fastHistogramBayer t is static parameter for

FAST HISTOGRAM BAYER and FAST HISTOGRAM BAYE G1G2 types.

Page 219 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

typedef struct{
fastBayerPattern t bayerPattern;

} fastHistogramBayer t

where bayerPattern is pattern for bayer filtered image.

Structure fastHistogramParade t is static parameter for

FAST HISTOGRAM PARADE type.

typedef struct{
unsigned int stride;

} fastHistogramParade t

where stride is step to next image column used for parade calculation.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

5.27.2 fastHistogramGetAllocatedGpuMemorySize

fastStatus t fastHistogramGetAllocatedGpuMemorySize

(fastHistogramHandle t handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for Histogram component.

Parameters:

handle[in] – Histogram handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for Histogram component.

Statuses:

� FAST OK.

Page 220 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.27.3 fastHistogramChangeSrcBuffer

fastStatus t fastHistogramChangeSrcBuffer

(fastHistogramHandle t handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – Histogram handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.27.4 fastHistogramCalculate

fastStatus t fastHistogramCalculate

(fastHistogramHandle t handle,

void *histogramParameters,

unsigned int roiLeftTopX,

unsigned int roiLeftTopY,

unsigned int roiWidth,

unsigned int roiHeight,

unsigned int *h histogram)

Calculates histogram in ROI for current image.

Parameters:

Page 221 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – Histogram handle;

histogramParameters[in] – pointer to dynamic parameter;

roiLeftTopX[in] – column of top left corner of ROI;

roiLeftTopY[in] – row of top left corner of ROI;

roiWidth[in] – width of ROI;

roiHeight[in] – height of ROI;

h histogram[out] – CPU buffer for calculated histogram.

Notes:

If

roiLeftTopX + roiWidth

greater than image width or

roiLeftTopY + roiHeight

greater than image height error status FAST INVALID SIZE will be returned.

Values roiLeftTopX, roiLeftTopY have to be even in case of bayer histogram.

There is no dynamic parameter for FAST HISTOGRAM COMMON type. Struc-

ture fastHistogramBayer t is dynamic parameter for FAST HISTOGRAM BAYER and

FAST HISTOGRAM BAYER G1G2 types. Structure fastHistogramParade t is dynamic

parameter for FAST HISTOGRAM PARADE type.

Buffer h histogram has to be allocated with fastMalloc. Buffer, which is allocated by

original malloc also can be used, but copy speed will degrade. If size of h histogram is not

enough, then the function will fail with segmentation fault.

Number of elements in h histogram is multiplication of bin count on number of his-

togram. Elements of histogram are int values. Number of histograms depends on his-

togram type, surface format and image width (for some types). Number of histograms

can be calculated by GetHistogramCount function in HistogramSample.

Function FastHistogramCalculate copies h histogram buffer asynchronously. So when

function finished, the buffer is not ready. It is necessary to use cudaEvent to wait until

copy has been finished. See HistogramSample.

Format h histogram depends on histogram type. For FAST HISTOGRAM COMMON,

FAST HISTOGRAM BAYER, FAST HISTOGRAM BAYER G1G2 types h histogram is

an array of histograms where each histogram is dense array of values. Histogram or-

der in h histogram for color image is R, G, B. Histogram order in h histogram for Bayer

Page 222 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

filtered image is the same. Histogram order in h histogram for Bayer filtered image for

FAST HISTOGRAM BAYER G1G2 is R, G1, B, G2. Where G1 is green pixel in the

first line of pattern, G2 is green pixel in the second line of pattern. For more details see

SaveHistogramToFile in HistogramSample.

For FAST HISTOGRAM PARADE h histogram is array of parades. Parade order is

R, G, B. Parade contains the first bin for each column then second bin for each column

and so on. For more details see SaveParadeToFile in HistogramSample.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.27.5 fastHistogramDestroy

fastStatus t fastHistogramDestroy

(fastHistogramHandle t handle)

Destroys Histogram component.

Parameters:

handle[in] – Histogram component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.28 NppFilter functions

Page 223 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.28.1 fastNppFilterCreate

fastStatus t fastNppFilterCreate

(fastNppFilterHandle t *handle,

fastNPPImageFilterType t filterType,

void *staticFilterParameters,

unsigned maxWidth,

unsigned maxHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates NppFilter and returns associated handle.

Parameters:

handle[out] – pointer to created NppFilter component;

filterType[in] – filter type;

staticFilterParameters[in] – pointer to static parameter;

maxWidth[in] – maximum input image width in pixels;

maxHeight[in] – maximum input image height in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output

buffer of current component).

Notes:

Function fastNppFilterCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastNppFilterCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

There are three filters: NPP GAUSSIAN SHARPEN, NPP UNSHARP MASK SOFT,

NPP UNSHARP MASK HARD.

Filter NPP GAUSSIAN SHARPEN supports next surfaces: I8, RGB8, I16, RGB16.

Filters NPP UNSHARP MASK * support next surfaces: RGB8, RGB12, RGB16.

Structure fastNPPGaussianFilter t is static parameter for NPP GAUSSIAN SHARPEN

Page 224 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

filter type.

typedef struct{
double radius;

double sigma;

} fastNPPGaussianFilter t

where radius is a radius of gaussian kernel, sigma is parameter for kernel value.

In general radius of kernel should be

3× sigma

but for performance optimization radius can be less than

3× sigma.

Liner size of kernel can be estimated like

2× radius + 1.

Filters NPP UNSHARP MASK SOFT and NPP UNSHARP MASK HARD have

the same function

out = val + amount× (val− blur)× envelop(val),

where

� val is original image value,

� blur is a pixel of blurred image,

� amount controls how much contrast is added at the edges.

� Envelop function allow to make amount parameter depended on pixel brightness.

Also there is additional parameter threshold. The threshold controls the minimum bright-

ness change that will be sharpened. If

(val− blur)

less threshold then amount will be set to zero.

Filter NPP UNSHARP MASK SOFT ignores threshold parameter.

Structure fastNPPUnsharpMaskFilter t is static parameter for

NPP UNSHARP MASK SOFT and NPP UNSHARP MASK HARD filter types.

Page 225 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

typedef struct{
float amount;

float sigma;

float envelopMedian; /*(0;1)*/

float envelopSigma; /*(0;), 0.5 - mean median of value interval*/

int envelopRank; /*2,4,6,8,12*/

float envelopCoef; /*(;0)*/

float threshold; /*(0;1)*/

} fastNPPUnsharpMaskFilter t

where

� amount is filter function parameter,

� sigma defines blur kernel size and value.

There is no radius as a parameter for the filter. Radius is always equal to

3× sigma.

Threshold is relative to pixel range. Description envelop function and its parameters you

can find in the chapter about NPP component.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED SURFACE.

5.28.2 fastNppFilterGetAllocatedGpuMemorySize

fastStatus t fastNppFilterGetAllocatedGpuMemorySize

(fastNppFilterHandle t *handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for NppFilter component.

Parameters:

Page 226 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – NppFilter handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for NppFilter component.

Statuses:

� FAST OK.

5.28.3 fastNppFilterChangeSrcBuffer

fastStatus t fastNppFilterChangeSrcBuffer

(fastNppFilterHandle t *handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – NppFilter handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.28.4 fastNppFilterFiltersTransform

fastStatus t fastNppFilterTransform

(fastNppFilterHandle t handle,

unsigned width,

unsigned height,

void *filterParameters)

Page 227 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Performs current NppFilter transformation.

Parameters:

handle[in] – ImageFilter component handle;

width[in] – image width in pixels;

height[in] – image height in pixels;

filterParameters[in] – filter parameters for current image.

Notes:

If image size is greater than maximum value on creation error status

FAST INVALID SIZE will be returned.

Pointer filterParameters can point on the following structures:

� fastNPPGaussianFilter t,

� fastNPPUnsharpMaskFilter t.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.28.5 fastNppFilterDestroy

fastStatus t fastNppFilterDestroy

(fastNppFilterHandle t handle)

Destroys NppFilter component.

Parameters:

handle[in] – NppFilter component handle.

Notes:

Page 228 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.29 NppGeometry functions

5.29.1 fastNppGeometryCreate

fastStatus t fastNppGeometryCreate

(fastNppGeometryHandle t *handle,

fastNppGeometryTransformationType t transformationType,

fastNPPImageInterpolation t interpolationMode,

void *filterParameters,

unsigned maxDstWidth,

unsigned maxDstHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates NppGeometry and returns associated handle.

Parameters:

handle[out] – pointer to created NppGeometry component;

transformationType[in] – transformation type;

interpolationMode[in] – interpolation mode;

filterParameters[in] – pointer to static parameter;

maxWidth[in] – maximum input image width in pixels;

maxHeight[in] – maximum input image height in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output

buffer of current component).

Notes:

Page 229 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Function fastNppGeometryCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastNppGeometryCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

There are two transformations:

� FAST NPP GEOMETRY REMAP,

� FAST NPP GEOMETRY REMAP3.

Transformation FAST NPP GEOMETRY REMAP3 allows individual transforma-

tion for each RGB channels.

Filter FAST NPP GEOMETRY REMAP supports next surfaces: I12, RGB12, I16,

RGB16.

Filter FAST NPP GEOMETRY REMAP3 supports next surfaces: RGB12, RGB16.

Structure fastNPPRemap t is static parameter for FAST NPP GEOMETRY REMAP

filter type.

typedef struct{
fastNPPRemapMap t *map;

fastNPPRemapBackground t *background;

} fastNPPRemap t

Structure fastNPPRemap3 t is static parameter for

FAST NPP GEOMETRY REMAP3 filter type.

typedef struct{
fastNPPRemapMap t *map[3];

fastNPPRemapBackground t *background;

} fastNPPRemap3 t

where

� map field stores information about transformation,

� background stores RGB value for background.

Structure fastNPPRemap3 t has individual transformation for each RGB channels,

respectively.

Remap transformation is the process of taking pixels from one place in the image and

Page 230 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

locating them in another position in a new image. To accomplish the mapping process, it

might be necessary to do some interpolation for non-integer pixel locations, since there will

not always be a one-to-one-pixel correspondence between source and destination images.

Structure fastNPPRemapMap t stores information about transformation.

typedef struct{
float *mapX;

float *mapY;

unsigned dstWidth;

unsigned dstHeight;

} fastNPPRemapMap t

where dstWidth, dstHeight are new image width and height respectively. Arrays mapX,

mapY have size as a source image. Value in the array is position of pixel in new image.

Array mapX stores new X position (column) , Array mapY stores new Y position (row).

During transformation some new pixel will be defined by old pixel. This pixel will

be filled by background color.

Structure fastNPPRemapBackground t defines color for background.

typedef struct{
unsigned R;

unsigned G;

unsigned B;

bool isEnabled;

} fastNPPRemapBackground t

If background is enabled then destination image before transformation will be filled

by background. If background is disabled then non initialized pixels can contain noise or

pixel of previous images.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INVALID VALUE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST UNSUPPORTED SURFACE.

Page 231 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.29.2 fastNppGeometryGetAllocatedGpuMemorySize

fastStatus t fastNppGeometryGetAllocatedGpuMemorySize

(fastNppGeometryHandle t *handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for NppGeometry component.

Parameters:

handle[in] – NppGeometry handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for NppGeometry component.

Statuses:

� FAST OK.

5.29.3 fastNppGeometryChangeSrcBuffer

fastStatus t fastNppGeometryChangeSrcBuffer

(fastNppGeometryHandle t *handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer

Parameters:

handle[in] – NppGeometry handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

Page 232 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.29.4 fastNppGeometryTransform

fastStatus t fastNppGeometryTransform

(fastNppGeometryHandle t handle,

void *filterParameters,

unsigned width,

unsigned height)

Performs current NppGeometry transformation.

Parameters:

handle[in] – ImageFilter component handle;

filterParameters[in] – filter parameters for current image;

width[in] – NppGeometry width in pixels;

height[in] – image height in pixels.

Notes:

If image size is greater than maximum value on creation error status

FAST INVALID SIZE will be returned.

Pointer filterParameters can point on the following structures:

� fastNPPRemap t,

� fastNPPRemap3 t.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.29.5 fastNppGeometryDestroy

fastStatus t fastNppGeometryDestroy

Page 233 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

(fastNppGeometryHandle t handle)

Destroys NppGeometry component.

Parameters:

handle[in] – NppGeometry component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

Page 234 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.30 NppResize functions

5.30.1 fastNppResizeCreate

fastStatus t fastNppResizeCreate

(fastNppResizeHandle t *handle,

unsigned resizedWidth,

unsigned resizedHeight,

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates NppResize and returns associated handle.

Parameters:

handle[out] – pointer to created Resizer component;

resizedWidth[in] – maximum destination (cropped) image width in pixels;

resizedHeight[in] – maximum destination (cropped) image height in pixels;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer of

current component).

Notes:

Function fastNppResizeCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastNppResizeCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Component supports next surfaces: RGB8, RGB12, RGB16.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

Page 235 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.30.2 fastNppResizeGetAllocatedGpuMemorySize

fastStatus t fastNppResizeGetAllocatedGpuMemorySize

(fastNppResizeHandle t *handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for NppResize component.

Parameters:

handle[in] – NppResize handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for NppResize component.

Statuses:

� FAST OK.

5.30.3 fastNppResizeChangeSrcBuffer

fastStatus t fastNppResizeChangeSrcBuffer

(fastNppResizeHandle t *handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – NppResize handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

Page 236 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

5.30.4 fastNppResizeTransform

fastStatus t fastNppResizeTransform

(fastNppResizeHandle t handle,

fastNPPImageInterpolation t resizeType,

unsigned width,

unsigned height,

unsigned resizedWidth,

unsigned *resizedHeight,

double shiftX,

double shiftY)

Performs current NppResize transformation.

Parameters:

handle[in] – NppResizer handle;

resizeType[in] – type of resize interpolation;

width[in] – input image width in pixels;

height[in] – input image height in pixels;

resizedWidth[in] – width of resized image in pixels;

resizedHeight[out] – height of resized image in pixels;

shiftX[in] – shift between source and destination grids by x coordinate. Cur-

rently ignored, should be 0,0;

shiftY[in] – shift between source and destination grids by y coordinate. Cur-

rently ignored, should be 0,0.

Notes:

If size of input image or size of resized image are greater than maximum value on

creation error status FAST INVALID SIZE will be returned.

Height of resized image is calculated by the function and then customer application

gets it in resizedHeight.

Statuses:

� FAST OK,

Page 237 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.30.5 fastNppResizeTransformStretch

fastStatus t fastNppResizeTransformStretch

(fastNppResizeHandle t handle,

fastNPPImageInterpolation t resizeType,

unsigned width,

unsigned height,

unsigned resizedWidth,

unsigned resizedHeight,

double shiftX,

double shiftY)

Performs current NppGeometry transformation.

Parameters:

handle[in] – NppResizer handle;

resizeType[in] – type of resize interpolation;

width[in] – input image width in pixels;

height[in] – input image height in pixels;

resizedWidth[in] – width of resized image in pixels;

resizedHeight[in] – height of resized image in pixels;

shiftX[in] – shift between source and destination grids by x coordinate. Cur-

rently ignored, should be 0,0;

shiftY[in] – shift between source and destination grids by y coordinate. Cur-

rently ignored, should be 0,0.

Notes:

Page 238 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

If size of input image or size of resized image are greater than maximum value on

creation error status FAST INVALID SIZE will be returned.

Function allows upscale one dimension and downscale other dimension.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.30.6 fastNppResizeDestroy

fastStatus t fastNppResizeDestroy

(fastNppResizeHandle t handle)

Destroys NppResize component.

Parameters:

handle[in] – NppResize component handle.

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

5.31 NppRotate functions

5.31.1 fastNppRotateCreate

fastStatus t fastNppRotateCreate

(fastNppRotateHandle t *handle,

fastNPPImageInterpolation t interpolationMode,

Page 239 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

fastDeviceSurfaceBufferHandle t srcBuffer,

fastDeviceSurfaceBufferHandle t *dstBuffer)

Creates NppRotate and returns associated handle.

Parameters:

handle[out] – pointer to created NppRotate component;

interpolationMode[in] – type of rotate interpolation;

srcBuffer[in] – linked buffer from previous component;

dstBuffer[out] – pointer for linked buffer for the next component (output buffer

of current component).

Notes:

Function fastNppRotateCreate allocates all necessary buffers in GPU memory. So

in case GPU does not have enough free memory, then fastNppRotateCreate returns

FAST INSUFFICIENT DEVICE MEMORY.

If component does not support current surface format then the function will return

FAST UNSUPPORTED SURFACE.

Component supports next surfaces: I8,RGB8, I12, RGB12, I16, RGB16.

Statuses:

� FAST OK,

� FAST INSUFFICIENT DEVICE MEMORY,

� FAST INTERNAL ERROR,

� FAST INVALID SIZE,

� FAST UNSUPPORTED SURFACE.

5.31.2 fastNppRotateGetAllocatedGpuMemorySize

fastStatus t fastNppRotateGetAllocatedGpuMemorySize

(fastNppRotateHandle t *handle,

unsigned *requestedGpuSizeInBytes)

Returns requested GPU memory for NppRotate component.

Parameters:

Page 240 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

handle[in] – NppRotate handle;

requestedGpuSizeInBytes[out] – memory size in Bytes.

Notes:

Function returns requested memory size in Bytes for NppRotate component.

Statuses:

� FAST OK.

5.31.3 fastNppRotateChangeSrcBuffer

fastStatus t fastNppRotateChangeSrcBuffer

(fastNppRotateHandle t *handle,

fastDeviceSurfaceBufferHandle t srcBuffer)

Sets new source buffer.

Parameters:

handle[in] – NppRotate handle;

srcBuffer[in] – new source buffer.

Notes:

MaxWidth and MaxHeight of new buffer should be equal to appropriate values of

current buffer otherwise FAST INVALID SIZE will be returned.

Statuses:

� FAST OK,

� FAST INVALID SIZE.

5.31.4 fastNppRotateGetRotateQuad

fastStatus t fastNppRotateGetRotateQuad

(fastNppRotateHandle t handle,

unsigned width,

unsigned height,

double rotateAngle,

double shiftX,

Page 241 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

double shiftY,

NppQuadCorners t *quadCorners)

Returns coordinates of rectangle that envelop rotated image.

Parameters:

handle[in] – NppRotate handle;

width[in] – input image width in pixels;

height[in] – input image height in pixels;

rotateAngle[in] – rotation angle in degrees;

shiftX[in] – shift by X for upper left corner of image;

shiftY[in] – shift by Y for upper left corner of image;

quadCorners[out] – pointer to result coordinates. Coordinate can be negative.

Notes:

The function is wrapper for nppiGetRotateQuad function. It allows to calculate real

size of rotated image. It is not so obvious because image size depend on rotation angle.

Statuses:

� FAST OK,

� FAST INVALID SIZE,

� FAST INTERNAL ERROR.

5.31.5 fastNppRotateTransform

fastStatus t fastNppRotateTransform

(fastNppRotateHandle t handle,

unsigned width,

unsigned height,

unsigned dstRoiX,

unsigned dstRoiY,

double rotateAngle,

double shiftX,

double shiftY)

Page 242 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Performs current NppRotate transformation.

Parameters:

handle[in] – NppRotate handle;

width[in] – input image width in pixels;

height[in] – input image height in pixels;

dstRoiX[in] – width of rotated image in pixels;

dstRoiX[out] – height of rotated image in pixels;

rotateAngle[in] – rotation angle in degrees;

shiftX[in] – shift by X for upper left corner of image;

shiftY[in] – shift by Y for upper left corner of image.

Notes:

The function is wrapper for nppiRotate* function. Parameters dstRoiX, dstRoiY,

shiftX, shiftY calculated on result of fastNppRotateGetRotateQuad function. See sample of

rotation in NppSample.

Statuses:

� FAST OK,

� FAST INVALID VALUE,

� FAST INVALID HANDLE,

� FAST INTERNAL ERROR,

� FAST UNKNOWN ERROR,

� FAST EXECUTION FAILURE,

� FAST INVALID SIZE.

5.31.6 fastNppRotateDestroy

fastStatus t fastNppRotateDestroy

(fastNppRotateHandle t handle)

Destroys NppRotate component.

Parameters:

handle[in] – NppRotate component handle.

Page 243 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

Notes:

Procedure frees all device memory.

Statuses:

� FAST OK,

� FAST INVALID HANDLE.

Page 244 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

6 Source Code for Sample Applications

The source codes for sample applications and for all other demo software are located

in the samples directory of the SDK. Microsoft Visual Studio (2015) solution and Linux

makefiles are included with the source code. Qt solution is coming soon.

6.1 Other Sample Applications

Command-line sample applications are provided with the current SDK. The exe-

cutables for all sample applications are in the SDK /bin directory. Each sample can be

executed without any parameters to display a message which briefly describes all available

parameters. To build the above applications, one have to utilize the following files:

� all h-files are in the SDK inc directory,

� all lib-files are in the SDK lib directory.

6.2 Examples of command line

for DebayerSample application

Debayering with DebayerSample application:

DebayerSample.exe -i kodim19.pgm -o kodim19.ppm -type DFPD -pattern RGGB

-info

The application takes kodim19.pgm image from the current directory and runs de-

bayer with DFPD algorithm and pattern RGGB to create an image kodim19.ppm. Pa-

rameter -info means that we will get detailed info about timing and performance.

.\x64\Release\DebayerSample.exe -if .\..\Images\*.pgm

-o .\x64\Release\*.ppm -type DFPD -pattern RGGB -maxWidth 4096

-maxHeight 4096 -info

The application takes all PGM images from the folder

.\..\Images\

and does debayering with DFPD algorithm and pattern RGGB to create corresponding

images with PPM extension. Maximum width and height of all images can’t exceed 4096

in that particular case. Real maximum height and width depend on GPU memory size.

Page 245 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

6.3 Examples of command line

for JpegSample application

Decoding with JpegSample application:

JpegSample.exe -i input.jpg -o output.ppm -info

The application takes input.jpg image from the current directory and decodes it to

file output.ppm. Parameter -info means that application will output detailed info about

timing and performance.

.\x64\Release\JpegSample.exe -if .\..\Images\*.jpg -o .\x64\Release\*.ppm

-maxWidth 4096 -maxHeight 4096 -info

The application takes all JPEG images from the folder

.\..\Images\

and decodes them into corresponding images with PPM extension. Maximum width and

height of all images in that particular case can’t exceed 4096. Real maximum height and

width depend on GPU memory size.

Encoding with JpegSample application:

JpegSample.exe -i input.ppm -o output.jpg -q 90 -s 444 -info

The application takes input.ppm image from the current directory and encodes it

to file output.jpg with JPEG quality 90%, subsampling 4 : 4 : 4 and optimum restart

interval is computed automatically. Parameter -info means that application will output

detailed info about timing and performance.

6.4 Example of command line

for DebayerJpegSample application

That application makes Demosaicing and JPEG compression in one pipeline:

DebayerJpegSample.exe -i input.pgm -o output.jpg -type DFPD -pattern RGGB

-q 90 -s 420 -info

The application takes input.pgm image from the current directory and converts it

to output.jpg. Parameter -info means that application will output detailed info about

timing and performance.

Page 246 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

6.5 Examples of command line

for SDIConverterSample application

That application takes an input image from the current directory and runs SDI

transforms from RGB to YCbCr or from YCbCr to RGB. Parameter -info means that

we will get detailed info about timing and performance.

Command line for SDIConverterSample:

SDIConverterSample.exe -i <input image> -o <output image> -format <format>

-width <width> -height <height> -d <device ID> -info

Command line for import:

SDIConverterSample.exe -i <input image> -o <output image>

-format CbYCr422_709 -width 1920 -height 1080 -d <device ID> -info

Command line for export:

SDIConverterSample.exe -export -i <input image> -o <output image>

-format CbYCr422_709 -width 1920 -height 1080 -d <device ID> -info

6.6 Example of command line

for PhotoHostingSample application

That application does image processing with the following pipeline: JPEG decoding,

cropping, resizing, sharpening, JPEG encoding

PhotoHostingSample.exe -i input.jpg

-o output.crop.1023.jpg -outputWidth 1023 -crop 1900x1000+12+10 -q 90

-s 444 -info

The application takes input.jpg image from the current directory, crops it with

offsets 12 and 10 with final resolution 1900x1000, then does resize to final width 1023

and converts it to output.crop.1023.jpg. Parameter -info means that application will

output detailed info about timing and performance.

This is an example for batch image processing:

.\x64\Release\PhotoHostingSample.exe -if .\..\Images\*.jpg

-o .\x64\Release\*.512.jpg -outputWidth 511 -maxWidth 4096 -maxHeight 4096

Page 247 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

-q 90 -s 444 -info

6.7 Troubleshooting

Debug version of SDK which allows generation of a trace/debug log is also available.

It can be helpful for problem detection and identification. The debug DLL file name is

the same as the non-debug version, but with the addition of the letter “d” at the end of

filename prior to the file extension.

We welcome and encourage your questions and comments concerning our products

use from evaluation through deployment of your application.

Contact us at info@fastcompression.com

6.8 Disclaimer of Warranty

In addition to the provisions of the Standard License Agreement (SLA) of

FASTVIDEO the following apply:

Although FASTVIDEO has taken care to ensure the accuracy of the information

contained herein it accepts no responsibility for the consequences of any use thereof and

also reserves the right to change the specification without prior notice.

FASTVIDEO does not assume any liability for damage that is the result of improper

use of its products or failure to comply with the operating manuals or the applicable rules

and regulations.

6.9 List of Trademarks

FASTVIDEO is a registered trademark of FASTVIDEO LLC in Russia.

Microsoft, Windows, Windows 10, Windows 8, Windows 7, Windows Vista, and

Microsoft Visual Studio are either registered trademarks or trademarks of Microsoft Cor-

poration in the United States and/or other countries.

NVIDIA, CUDA, NPP, Tegra, Linux4Tegra, GeForce, Quadro, Tesla are trademarks

of NVIDIA Corporation.

OpenGL is a registered trademark of Silicon Graphics, Inc.

Linux is a trademark of Linus Torvalds.

Intel, Core i3 and i7 are trademarks of Intel Corporation.

FFmpeg is a trademark of Fabrice Bellard, originator of the FFmpeg project.

Qt is a registered trademark of Qt Company Ltd.

Page 248 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

All other brands, service provision brands and logos referred to are brands, service

provision brands and logos belonging to their respective owners.

Page 249 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

7 Application Notes

All functions of the software work with NVIDIA Maxwell and late GPU architectures

with the latest drivers installed. We don’t support GPUs with cc < 5.0 from NVIDIA.

The software can’t work neither with Intel nor AMD/ATI GPUs.

The software can’t work with Windows 2000 and XP. Command line applications are

compiled for Windows-7/8/10, 64-bit.

Before testing SDK components or sample applications, please check that CUDA

runtime libraries and GPU drivers are installed.

CUDA JPEG codec can work with JPEG images only according to specification of

the Baseline part of JPEG Standard. CUDA JPEG encoder can work with 12-bit image

format as well. Arithmetic coding, lossless JPEG (JPEG LS), progressive JPEG and

other extended features are beyond codec’s capabilities.

CUDA JPEG codec could be exceptionally fast at JPEG decoding only in the case

when input images have built-in Restart Markers. These markers ensure fully parallel im-

plementation of JPEG decoding on GPU. If compressed input image doesn’t have Restart

Markers, the codec can perform Huffman decoding stage of JPEG Baseline algorithm on

CPU and then carry on with GPU. This solution is still much faster than full JPEG de-

compression on CPU. If you do image compression with CUDA JPEG codec, the software

automatically adds Restart Markers into compressed bitstream and you will not have any

problems with performance at the decompression stage.

To get maximum performance, GPU needs as much data as possible. For small

images (resolution less than 300 × 300) one can get moderate performance results even

with very powerful GPU.

There is an upper limit for resolution for big images due to size of available GPU

RAM. Please test your images on demo sample application to be sure that your GPU can

work with images with desired resolution. There is also a lower limit for image resolution

which is quite small.

Please note that in the case when you are utilizing discrete GPU at laptop, be sure

that your laptop is directly connected to external power supply. Without external power,

GPU performance will degrade.

If you implement your own software with FASTVIDEO SDK, please check that your

application is running just one instance of fastvideo_sdk.dll per GPU, though it’s

possible (with less performance) to run several instances as well. The most efficient way

is to run just one instance per GPU, because the software is highly optimized and GPU

Page 250 from 251 © Fastvideo, 2011-2022



Fastvideo Image & Video Processing SDK Technical manual

occupancy is very high, so at each moment just one image could be processed on particular

GPU. It could be a good idea to organize input and output queues which are working

with the same instance of fastvideo_sdk.dll to ensure maximum performance.

To get better performance we also recommend to utilize big images and multiple

CUDA Streams to ensure overlapping between data copy and computations.

Page 251 from 251 © Fastvideo, 2011-2022


	Introduction
	About this manual
	About FASTVIDEO
	Contact FASTVIDEO
	Conformity
	Useful Links

	FASTVIDEO Image & Video Processing SDK
	Input Data Formats
	RAW Data Unpacking and Transforms
	Dark Frame Subtraction
	Flat Field Correction (Shading Correction)
	RGB coefficients for RAW data
	Raw Curve as 1D LUT transform
	Temporal Raw Denoiser (under development)
	Spatial Raw Denoiser together with Splitter and Merger
	Median Filter
	HDR Builder
	Demosaic (Debayer)
	Color Surface Converter
	Spatial Denoiser for luma and chroma
	Color Correction
	1D LUTs
	3D LUTs for RGB and HSV
	Crop
	Rotate
	Resize
	Remap
	Sharp
	Histogram
	Parade (Waveform monitor)
	OpenGL Output
	CUDA Streams support
	JPEG Compression and Decompression
	JPEG2000 Encoder and Decoder
	RAW Bayer Codec
	Pipeline description for image acquisition stage
	Image processing and visualizing for compressed RAW


	Operation
	Software Requirements
	Hardware Requirements
	System Configuration
	Minimum system configuration
	Recommended standard system configuration
	Recommended professional system configuration

	Supported Image and Video Formats
	IP protection
	Technical Overview
	GPU Test for Windows
	Quick Start
	Installation

	Programming components
	Library of components
	Pipeline
	Programming interface
	Import and Export Adapters
	Pipeline Surface Format
	Pipeline Split and Merge
	Component recreation
	Threads, Streams and Performance
	Multi GPU
	Debayer
	Spatial Denoiser
	JPEG Load and Store functions
	JPEG Encoder/Decoder
	JPEG CPU Decoder
	JPEG2000 Encoder/Decoder
	Timer
	MJPEG Reader/Writer
	Affine Transforms
	Crop component
	Image Filter component
	Base Color Correction
	Bayer Black Shift
	Binning Filter
	Flat-field correction
	Color Saturation
	Gaussian sharpen filter
	LUT
	LUT RGB 3D
	LUT HSV 2D/3D
	Median filter
	SAM (subtract and multiply)
	Tone Curve
	White Balance

	HDR Builder component
	Resizer component
	Bayer Splitter and Bayer Merger components
	SDI import and export components
	RAW import component
	Surface converter component
	Histogram component
	NPP component
	Auxiliary functions
	Trace functions
	Sample Applications
	How to create your own applications with that SDK
	Demo Applications

	Fastvideo SDK API
	Statuses
	Master SDK and secondary library initialization
	fastInit
	fastGetSdkParametersHandle
	fastLibraryInit

	Trace and Auxiliary functions
	fastGetDeviceSurfaceBufferInfo
	fastEnableInterfaceSynchronization
	fastTraceCreate
	fastTraceClose
	fastTraceEnableFlush

	Memory management functions
	fastMalloc
	fastFree
	fastGetDevices

	Pipeline import functions
	fastImportFromHostCreate
	fastImportFromHostGetAllocatedGpuMemorySize
	fastImportFromHostCopy
	fastImportFromHostDestroy
	fastImportFromDeviceCreate
	fastImportFromDeviceGetAllocatedGpuMemorySize
	fastImportFromDeviceCopy
	fastImportFromDeviceDestroy

	Pipeline export functions
	fastExportToHostCreate
	fastExportToHostGetAllocatedGpuMemorySize
	fastExportToHostChangeSrcBuffer
	fastExportToHostCopy
	fastExportToHostDestroy
	fastExportToDeviceCreate
	fastExportToDeviceCopy
	fastExportToDeviceGetAllocatedGpuMemorySize
	fastExportToDeviceChangeSrcBuffer
	fastExportToDeviceDestroy

	Debayer functions
	fastDebayerCreate
	fastDebayerGetAllocatedGpuMemorySize
	fastDebayerChangeSrcBuffer
	fastDebayerTransform
	fastDebayerDestroy

	Denoise functions
	fastDenoiseCreate
	fastDenoiseGetAllocatedGpuMemorySize
	fastDenoiseChangeSrcBuffer
	fastDenoiseTransform
	fastDenoiseTransformBayerPlanes
	fastDenoiseDestroy

	JPEG Encoder functions
	fastJpegEncoderCreate
	fastJpegEncoderGetAllocatedGpuMemorySize
	fastJpegEncoderChangeSrcBuffer
	fastJpegEncode
	fastJpegEncodeAsync
	fastJpegEncodeWithQuantTable
	fastJpegEncodeAsyncWithQuantTable
	fastJpegEncoderDestroy

	JPEG Decoder functions
	fastJpegDecoderCreate
	fastJpegDecoderGetAllocatedGpuMemorySize
	fastJpegDecode
	fastJpegDecoderDestroy

	JPEG CPU Decoder functions
	fastJpegCpuDecoderCreate
	fastJpegCpuDecoderGetAllocatedGpuMemorySize
	fastJpegCpuDecode
	fastJpegDecoderDestroy

	JPEG I/O functions
	fastJfifLoadFromFile
	fastJfifHeaderLoadFromFile
	fastJfifBytestreamLoadFromFile
	fastJfifLoadFromMemory
	fastJfifLoadHeaderFromMemory
	fastJfifLoadBytestreamFromMemory
	fastJfifStoreToFile
	fastJfifStoreToMemory

	JPEG2000 Encoder functions
	fastEncoderJ2kLibraryInit
	fastEncoderJ2kCreate
	fastEncoderJ2kGetAllocatedGpuMemorySize
	fastEncoderJ2kTransform
	fastEncoderJ2kFreeSlotsInBatch
	fastEncoderJ2kUnprocessedImagesCount
	fastEncoderJ2kAddImageToBatch
	fastEncoderJ2kTransformBatch
	fastEncoderJ2kGetNextEncodedImage
	fastEncoderJ2kDestroy

	JPEG2000 Decoder functions
	fastDecoderJ2kLibraryInit
	fastDecoderJ2kPredecode
	fastDecoderJ2kCreate
	fastDecoderJ2kGetAllocatedGpuMemorySize
	fastDecoderJ2kTransform
	fastDecoderJ2kFreeSlotsInBatch
	fastDecoderJ2kUnprocessedImagesCount
	fastDecoderJ2kAddImageToBatch
	fastDecoderJ2kTransformBatch
	fastDecoderJ2kGetNextDecodedImage
	fastDecoderJ2kDestroy

	Affine functions
	fastAffineCreate
	fastAffineGetAllocatedGpuMemorySize
	fastAffineChangeSrcBuffer
	fastAffineTransform
	fastAffineDestroy

	Crop functions
	fastCropCreate
	fastCropGetAllocatedGpuMemorySize
	fastCropChangeSrcBuffer
	fastCropTransform
	fastCropDestroy

	Image Filter functions
	fastImageFilterCreate
	fastImageFiltersGetAllocatedGpuMemorySize
	fastImageFiltersChangeSrcBuffer
	fastImageFiltersTransform
	FastImageFiltersDestroy

	Resize functions
	fastResizerCreate
	fastResizerGetAllocatedGpuMemorySize
	fastResizerChangeSrcBuffer
	fastResizerTransform
	fastResizerTransformStretch
	fastResizerDestroy

	HDR Builder functions
	fastHdrBuilderCreate
	fastHdrBuilderGetAllocatedGpuMemorySize
	fastHdrBuilderChangeSrcBuffer
	fastHdrBuilderFill
	fastHdrBuilderFillAndTransform
	fastHdrBuilderDestroy

	Bayer Splitter functions
	fastBayerSplitterCreate
	fastBayerSplitterGetAllocatedGpuMemorySize
	fastBayerSplitterChangeSrcBuffer
	fastBayerSplitterSplit
	fastBayerSplitterDestroy

	Bayer Merger functions
	fastBayerMergerCreate
	fastBayerMergerGetAllocatedGpuMemorySize
	fastBayerMergerChangeSrcBuffer
	fastBayerMergerMerge
	fastBayerMergerDestroy

	Timer functions
	fastGpuTimerCreate
	fastGpuTimerStart
	fastGpuTimerStop
	fastGpuTimerGetTime
	fastGpuTimerDestroy

	Mux functions
	fastMuxCreate
	fastMuxSelect
	fastMuxDestroy

	SDI import and export
	fastSDIImportFromHostCreate/fastSDIImportFromDeviceCreate
	fastSDIExportToHostCreate/fastSDIExportToDeviceCreate
	fastSDIImportFromHostGetAllocatedGpuMemorySize
	fastSDIImportFromDeviceGetAllocatedGpuMemorySize
	fastSDIExportToHostGetAllocatedGpuMemorySize
	fastSDIExportToDeviceGetAllocatedGpuMemorySize
	fastSDIImportFromHostCopy/fastSDIImportFromDeviceCopy
	fastSDIImportFromHostCopyPacked/fastSDIImportFromDeviceCopyPacked
	fastSDIExportToHostCopy/fastSDIExportToDeviceCopy
	fastSDIImportToHostCopy3/fastSDIImportToDeviceCopy3
	fastSDIExportToHostCopy3/fastSDIExportToDeviceCopy3
	fastSDIImportFromHostDestroy/fastSDIImportFromDeviceDestroy
	fastSDIExportToHostDestroy/fastSDIExportToDeviceDestroy

	RAW import
	fastRawImportFromHostCreate/fastRawImportFromDeviceCreate
	fastRAWImportFromHostGetAllocatedGpuMemorySize
	fastRAWImportFromDeviceGetAllocatedGpuMemorySize
	fastRawImportFromHostDecode/fastRawImportFromDeviceDecode
	fastRawImportFromHostDestroy/fastRawImportFromDeviceDestroy

	Surface converter
	fastSurfaceConverterCreate
	fastSurfaceConverterGetAllocatedGpuMemorySize
	fastSurfaceConverterChangeSrcBuffer
	fastSurfaceConverterTransform
	fastSurfaceConverterDestroy

	Histogram functions
	fastHistogramCreate
	fastHistogramGetAllocatedGpuMemorySize
	fastHistogramChangeSrcBuffer
	fastHistogramCalculate
	fastHistogramDestroy

	NppFilter functions
	fastNppFilterCreate
	fastNppFilterGetAllocatedGpuMemorySize
	fastNppFilterChangeSrcBuffer
	fastNppFilterFiltersTransform
	fastNppFilterDestroy

	NppGeometry functions
	fastNppGeometryCreate
	fastNppGeometryGetAllocatedGpuMemorySize
	fastNppGeometryChangeSrcBuffer
	fastNppGeometryTransform
	fastNppGeometryDestroy

	NppResize functions
	fastNppResizeCreate
	fastNppResizeGetAllocatedGpuMemorySize
	fastNppResizeChangeSrcBuffer
	fastNppResizeTransform
	fastNppResizeTransformStretch
	fastNppResizeDestroy

	NppRotate functions
	fastNppRotateCreate
	fastNppRotateGetAllocatedGpuMemorySize
	fastNppRotateChangeSrcBuffer
	fastNppRotateGetRotateQuad
	fastNppRotateTransform
	fastNppRotateDestroy


	Source Code for Sample Applications
	Other Sample Applications
	Examples of command linefor DebayerSample application
	Examples of command linefor JpegSample application
	Example of command linefor DebayerJpegSample application
	Examples of command linefor SDIConverterSample application
	Example of command linefor PhotoHostingSample application
	Troubleshooting
	Disclaimer of Warranty
	List of Trademarks

	Application Notes

